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Notes on the Exercises

x 1. [00 ] What does the rating “M20 ” mean?
A mathematically oriented, medium difficulty exercise.

2. [10 ] Of what value can the exercises in a textbook be to the reader?
It helps to internalize contents by applying them.
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Chapter 1

Basic Concepts

1.1 Algorithms

1. [10 ] The text showed how to interchange the values of variables m and n, using the
replacement notation, by setting t← m, m← n, n← t. Show how the values of the
four variables (a, b, c, d) can be rearranged to (b, c, d, a) by a sequence of replacements.
In other words, the new value of a is to be the original value of b, etc. Try to use the
minimum number of replacements.
t← a, a← b, b← c, c← d, d← t.

x 5. [12 ] Show that the “Procedure for Reading This Set of Books” that appears in the
preface actually fails to be a genuine algorithm on at least three of our five counts! Also
mention some differences in format between it and Algorithm E.
It fails on finiteness (it doesn’t have an ending condition), definiteness (the instructions
are not unambiguous), and effectiveness (solving the Fermat’s theorem on the exercises
is not “sufficiently basic that it can be done exactly and in a finite length of time”), and
it may have no output (although, this time, this is the output). It also doesn’t have a
header, an ending mark, or a letter prefix on the steps.

x 7. [HM21 ] Let Um be the average number of times that step E1 is executed in
Algorithm E, if m is known and n is allowed to range over all positive integers. Show
that Um is well defined. Is Um in any way related to Tm?
On average, it will be the case that n > m, so after one step, the two numbers will
exchange positions and, after two steps, we’ll have the same value for m but n will be
the remainder of the original values of n and m, which is uniformly distributed on the
integers between 0 and m− 1. This means Um is two plus the average number of times
that E1 is executed if m is known and 0 ≤ n < m.

Further, since after one step, the two numbers interchange, it is clear that Um =
1 + Tm.

7



1.2. MATHEMATICAL PRELIMINARIES CHAPTER 1. BASIC CONCEPTS

x 9. [M30 ] Suppose that C1 = (Q1, I1,Ω1, f1) and C2 = (Q2, I2,Ω2, f2) are computa-
tional methods. For example, C1 might stand for Algorithm E as in Eqs. (2), except
that m and n are restricted in magnitude, and C2 might stand for a computer program
implementation of Algorithm E. (This Q2 might be the set of all states of the machine,
i.e., all possible configurations of its memory and registers; f2 might be the definition
of single machine actions; and I2 might be the set of initial states, each including the
program that determines the greatest common divisor as well as the particular values
of m and n.)

Formulate a set-theoretic definition for the concept “C2 is a representation of C1” or
“C2 simulates C1”. This is to mean intuitively that any computation sequence of C1 is
mimicked by C2, except that C2 might take more steps in which to do the computation
and it might retain more information in its states. (We thereby obtain a rigorous
interpretation of the statement, “Program X is an implementation of Algorithm Y .”)
We could state that C2 is a representation of C1 if there are functions h : Q2 → Q1,
g : I1 → I2, and j : Q2 → N∗ such that h ◦ g = IdI1 , Ω2 = h−1(Ω1), and for all q ∈ Q2,
f1(h(q)) = h(f

j(q)
2 (q)).

1.2 Mathematical Preliminaries

1.2.1 Mathematical Induction
1. [05 ] Explain how to modify the idea of proof by mathematical induction, in

case we want to prove some statement P (n) for all nonnegative integers—that is, for
n = 0, 1, 2, . . . instead of n = 1, 2, 3, . . . .
We’d prove that P (0) holds and that, for all n ≥ 0, if P (0), . . . , P (n) hold, then P (n+1)
holds.

x 2. [15 ] There must be something wrong with the following proof. What is it?
“Theorem: Let a be any positive number. For all positive integers n, we have

an−1 = 1. Proof. If n = 1, an−1 = a1−1 = 0. And by induction, assuming that the
theorem is true for 1, 2, . . . , n, we have

a(n+1)−1 = an =
an−1 × an−1

a(n−1)−1
=

1× 1

1
= 1;

so the theorem is true for n+ 1 as well.”
For n = 1, a(n−1)−1 = a0−1, but we haven’t proved the theorem for n = 0, and indeed,
a0−1 = a−1 = 1

a ̸= 1 if a ̸= 1.

x 8. [25 ]

1. Prove the following theorem of Nicomachus (A.D. c. 100) by induction: 13 = 1,
23 = 3 + 5, 33 = 7 + 9 + 11, 43 = 13 + 15 + 17 + 19, etc.

2. Use this result to prove the remarkable formula 13+23+· · ·+n3 = (1+2+· · ·+n)2.

8



CHAPTER 1. BASIC CONCEPTS 1.2. MATHEMATICAL PRELIMINARIES

1. For n = 1, 13 = 1, and the first number of the sequence is n(n − 1) + 1 =
1(1−1)+1 = 1. If these two properties are proved up to a certain number n, then
the first number of the sequence for n+1 is 2 plus the last number of the sequence for
n, that is, since the sequence for n has n numbers, the first number of the sequence
for n+1 is n(n−1)+1+2n = n(n−1+2)+1 = (n+1)n+1 = (n+1)((n−1)+1)+1.
Now, (n+1)3 = n3 +3n2 +3n+1 = (n(n− 1)+1)+ (n(n− 1)+3)+ · · ·+(n(n−
1)+2n−1)+2n ·n+n2+3n+1 = (n(n−1)+2n+1)+ · · ·+(n(n−1)+2n+2n−
1)+n2+n+2n+1 = (n(n+1)+1)+ · · ·+(n(n+1)+2n−1)+(n(n+1)+2n+1).

2. 13+23+ · · ·+n3 = 1+3+ · · ·+((n+1)n+1−2) = 1+3+ · · ·+((n+1)n−1). For
each n, n2 − (n− 1)2 = n2 − n2 + 2n− 1 = 2n− 1, so 13 + 23 + · · ·+ n3 = 1+ 3+

· · ·+((n+1)n−1) = (12−02)+(22−12)+ · · ·+
((

(n+1)n
2

)2
−
(

(n+1)n
2 − 1

)2)
=(

(n+1)n
2

)2
= (1 + 2 + · · ·+ n)2.

13. [M23 ] Extend Algorithm E by adding a new variable T and adding the operation
“T ← T + 1” at the beginning of each step. (Thus, T is like a clock, counting the
number of steps executed.) Assume that T is initially zero, so that assertion A1 in Fig.
4 becomes “m > 0, n > 0, T = 0.” The additional condition “T = 1” should similarly be
appended to A2. Show how to append additional conditions to the assertions in such a
way that any one of A1, A2, . . . , A6 implies T ≤ 3n, and such that the inductive proof
can still be carried out. (Hence the computation must terminate in at most 3n steps.)
At A3, we append T ≤ 3(n− r)− 1. From A2, we have T = 2, and since c = m > 0
and d = n > 0, we have r < n and thus 3(n− r)− 1 ≥ 3 · 1− 1 = 2. We have yet to
prove this when coming from A6.

At A4, we have T ≤ 3n, because, coming from A3, T ≤ 3(n− r)− 1 + 1 = 3n. At
A5, we have T ≤ 3(n− r). At A6, we have T ≤ 3(n− d) + 1.

Now, at A3, when coming from A6, we have T ≤ 3(n − d) + 2, but r < d, so
n− d > n− r and T ≤ 3(n− d) + 2 ≤ 3(n− r)− 3 + 2 = 3(n− r)− 1.

x 15. [HM28 ] (Generalized induction.) The text shows how to prove statements P (n)
that depend on a single integer n, but it does not describe how to prove statements
P (m,n) depending on two integers. In these circumstances a proof is often given by
some sort of “double induction,” which frequently seems confusing. Actually, there is an
important principle more general than simple induction that applies not only in this
case but also to situations in which statements are to be proved about uncountable
sets—for example, P (x) for all real x. This general principle is called well-ordering.

Let “≺” be a relation on a set S, satisfying the following properties:

1. Given x, y, and z in S, if x ≺ y and y ≺ z, then x ≺ z.

2. Given x and y in S, exactly one of the following three possibilities is true: x ≺ y,
x = y, or y ≺ x.

3. If A is any nonempty subset of S, there is an element x in A with x ⪯ y (that is,
x ≺ y or x = y) for all y in A.

9



1.2. MATHEMATICAL PRELIMINARIES CHAPTER 1. BASIC CONCEPTS

This relation is said to be a well-ordering of S. For example, it is clear that the positive
integers are well-ordered by the ordinary “less than” relation, <.

1. Show that the set of all integers is not well-ordered by <.

2. Define a well-ordering relation on the set of all integers.

3. Is the set of all nonnegative real numbers well-ordered by <?

4. (Lexicographic order.) Let S be well-ordered by ≺, and for n > 0, let Tn be
the set of n-tuples (x1, x2, . . . , xn) of elements xj in S. Define (x1, x2, . . . , xn) ≺
(y1, y2, . . . , yn) if there is some k, 1 ≤ k ≤ n, such that xj = yj for 1 ≤ j < k, but
xk ≺ yk in S. Is ≺ a well-ordering of Tn?

5. Continuing part 4, let T =
⋃

n≥1 Tn; define (x1, . . . , xm) ≺ (y1, . . . , yn) if xj = yj
for 1 ≤ j < k and xk ≺ yk, for some k ≤ min(m,n), or if m < n and xj = yj for
1 ≤ j ≤ m. Is ≺ a well-ordering of Tn?

6. Show that ≺ is a well-ordering of S if and only if it satisfies (i) and (ii) above and
there is no infinite sequence x1, x2, x3, . . . with xj+1 ≺ xj for all j ≥ 1.

7. Let S be well-ordered by ≺, and let P (x) be a statement about the element x of
S. Show that if P (x) can be proved under the assumption that P (y) is true for
all y ≺ x, then P (x) is true for all x in S.

1. Z is a non-empty subset of Z and it doesn’t have a first element under <.

2. Let a, b ∈ Z, we could say that a ≺ b if and only if |a| < |b|, or a = −b < 0, so the
order would be 0, 1,−1, 2,−2, . . . . Now:

(a) If a ≺ b and b ≺ c, then either a = −b < 0 so it must be |a| = |b| ≺ |c|
because it can’t be b = −c < 0 as b > 0, or |a| < |b| so |a| < |b| ≤ |c|. In
both cases, a ≺ c.

(b) If x ̸= y, then either |x| = |y| so it must be x ≺ y if y < 0 or y ≺ x if y > 0,
|x| < |y| so that x ≺ y, or |y| > |x| so that y ≺ x. It’s clear that x ≺ y
implies x ̸= y and y ⊀ x.

(c) Let S ⊆ Z be nonempty, then we can find the minimum element of S by
looking at the elements of S with minimal absolute value, which form a finite,
nonempty subset.

3. No, as the nonempty subset {x ∈ R : x > 0} doesn’t have a first element: for each
x > 0, x

2 < x.

4. Yes:

(a) If (a1, . . . , an) ≺ (b1, . . . , bn) ≺ (c1, . . . , cn), let k1 be the least integer with
ak1
≺ bk1

, k2 the least integer with bk2
≺ ck2

, and q := min{k1, k2}, then
ai = bi = ci for 0 ≤ i < q and aq ≺ cq, so (a1, . . . , an) ≺ (c1, . . . , cn).

10



CHAPTER 1. BASIC CONCEPTS 1.2. MATHEMATICAL PRELIMINARIES

(b) If (a1, . . . , an) ̸= (b1, . . . , bn), let k be the least integer with ak ̸= bk,
then either ak ≺ bk and so (a1, . . . , an) ≺ (b1, . . . , bn), or bk ≺ ak and
so (b1, . . . , bn) ≺ (a1, . . . , an), and we can see that no two of the three
possibilities can happen at once.

(c) Let A ⊆ Sn be nonempty. Let A1 be the set of a ∈ A with minimal a1,
A2 the set of a ∈ A1 with minimal a2, etc. Then the elements of A1 are
lower than any other element in A, the ones in A2 are lower than any other
elements in A1 and thus in A, etc. But then An contains only one element,
which is the least element of A.

5. No: if S contains two elements a ≺ b, then {(b), (a, b), (a, a, b), . . . } doesn’t have
a first element.

6.=⇒ ] If there were such an infinite sequence (xn)n≥1, then the set {xn}n≥1 wouldn’t
have a first element.#

⇐= ] Let A be a nonempty subset of S, and let x1 ∈ A. Then we take x2 ∈ A
with x2 ≺ x1, then x3 ∈ A with x3 ≺ x2, etc., and since there’s no infinite
sequence of this kind in S, then there must be an xn in the sequence with
no candidate for xn+1, meaning that, for all x ∈ A, xn ⪯ x. Therefore, xn is
the least element of A.

7. Let P be such a property that ∀x ∈ S, (∀y ≺ x, P (y) =⇒ P (x)). Assume there’s
an x0 ∈ S such that P (x0) doesn’t hold. This means there’s an x1 ≺ x0 such
that P (x1) doesn’t hold, which means there’s an x2 ≺ x1 such that P (x2) doesn’t
hold, etc. Then (xn)n is an infinite sequence of elements in S with xj+1 ≺ xj for
all j ∈ N, but S is well-ordered by ≺ #.

1.2.2 Numbers, Powers, and Logarithms

1. [00 ] What is the smallest positive rational number?
There isn’t.

2. [00 ] Is 1 + 0.239999999 . . . a decimal expansion?
Yes, as long as it means a number x with 1.239999999 ≤ x < 1.24, that is, as long as it
doesn’t end with an infinite number of nines.

3. [02 ] What is (−3)−3?
(−3)−3 = 1

(−3)3 = 1
−27 = − 1

27 .

x 4. [05 ] What is (0.125)−2/3?

(0.125)−2/3 = ( 18 )
−2/3 = 3

√
( 18 )

−2 =
3
√
82 = 3

√
64 = 4.
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1.2. MATHEMATICAL PRELIMINARIES CHAPTER 1. BASIC CONCEPTS

5. [05 ] We defined real numbers in terms of a decimal expansion. Discuss how we
could have defined them in terms of a binary expansion instead, and give a definition
to replace Eq. (2).
A decimal expansion would have the form x = n+ 0.b1b2b3 . . . , where each bi would be
a binary digit, 0 or 1, and this would mean that

n+
b1
2

+
b2
4

+ · · ·+ bk
2k
≤ x < n+

b1
2

+
b2
4

+ · · ·+ bk
2k

+
1

10k
.

6. [10 ] Let x = m+ 0.d1d2 . . . and y = n+ 0.e1e2 . . . be real numbers, Give a rule
for determining whether x = y, x < y, or x > y, based on the decimal representation.
We say that x = y if m = n and dk = ek for all k, and that x < y if m < n or if m = n
and there’s a k such that dj = ej for 1 ≤ j < k and dk < ek.

x 11. [10 ] If b = 10 and x ≈ log10 2, to how many decimal places of accuracy will we
need to know the value of x in order to determine the first three decimal places of the
decimal expansion of bx?
Potentially infinite. Because 10log10 2 = 2, 10x = 2.0 . . . if x ≥ log10 2 or 10x = 1.9 . . . if
x ≤ log10 2, but since log10 2 is irrational, its decimal expansion is infinite and, in the
worst case that x = log10 2, we can’t determine by an algorithm that x ≥ log10 2.

12. [02 ] Explain why Eq. (10) follows from Eqs. (8).
Because logarithms are strictly increasing, continuous functions, and we have that
100.30102999 < 2 < 100.30103000, we can take logarithms on the expression to get
0.30102999 < log10 2 < 0.30103000, and so log10 2 = 0.30102999.

x 13. [M23 ]

1. Given that x is a positive real number and n is a positive integer, prove the
inequality n

√
1 + x− 1 ≤ x/n.

2. Use this fact to justify the remarks following (7).

1. Let f(x) := n
√
1 + x− 1− x

n , we have to prove that, if n is a positive integer and
x > 0, then f(x) ≤ 0. We have

f ′(x) =
1

n n
√
1 + x

− 1

n
=

1

n

(
1

n
√
1 + x− 1

)
,

but since n
√
1 + x > 1 for x > 0, we have f ′(x) < 0 and f is strictly decreasing on

(0,+∞). Since f(0) = 0, this proves the result.

2. It’s clear that bn+d1/10+···+dk/10
k ≤ bn+1, and then, taken x = b − 1 > 0 and

n = 10k, we have 10k
√
1 + b− 1 = b1/10

k ≤ (b− 1)/10k.
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CHAPTER 1. BASIC CONCEPTS 1.2. MATHEMATICAL PRELIMINARIES

15. [10 ] Prove or disprove:

logb x/y = logb x− logb y, if x, y > 0.

Let α := logb x and β := logb y, we have

bα

bβ
= bαb−β = bα−β ,

and taking logarithms, we get logb
bα

bβ
= logb

x
y = logb b

α−β = α− β = logb x− logb y.

16. [00 ] How can log10 x be expressed in terms of lnx and ln 10?

log10 x = loge x
loge 10 = ln x

ln 10 .

x 17. [05 ] What is lg 32? logπ π? ln e? logb 1? logb(−1)?
lg 32 = 5, logπ π = 1, ln e = 1, logb 1 = 0. As for logb(−1), it would be an x such that
bx = −1, which is not a real number most of the time. As a complex number, it would
be logb(−1) =

ln(−1)
ln b = iπ

ln b , since eiπ = −1.

18. [10 ] Prove or disprove: log8 x = 1
2 lg x.

log8 x = lg x
lg 8 , but lg 8 = 3 ̸= 2, so this is false in the general case (this is only true when

x = 1).

x 19. [20 ] If n is an integer whose decimal representation is 14 digits long, will the
value of n fit in a computer word with a capacity of 47 bits and a sign bit?
The number of possibilities for a number with up to 14 digits is 1014, and the number
for 47 bits is 247 ≈ 1.3 · 214, so it would fit.

20. [10 ] Is there any simple relation between log10 2 and log2 10?

log10 2 = log2 2
log2 10 = 1

log2 10 , so log10 2 log2 10 = 1.

x 22. [20 ] (R. W. Hamming.) Prove that

lg x ≈ lnx+ log10 x,

with less than 1% error! (Thus a table of natural logarithms and of common logarithms
can be used to get approximate values of binary logarithms as well.)

lnx+ log10 x =
lg x

lg e
+

lg x

lg 10
= lg x

(
1

lg e
+

1

lg 10

)
∼= 0.994 lg x ≈ lg x,

and this gives us about 0.6% error.
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1.2. MATHEMATICAL PRELIMINARIES CHAPTER 1. BASIC CONCEPTS

x 27. [M25 ] Consider the method for calculating log10 x discussed in the text. Let x′
k

denote the computed approximation to xk, determined as follows: x(1− δ) ≤ 10nx′
0 ≤

x(1 + ϵ); and in the determination of x′
k by Eqs. (18), the quantity yk is used in place

of (x′
k−1)

2, where (x′
k−1)

2(1 − δ) ≤ yk ≤ (x′
k−1)

2(1 + ϵ) and 1 ≤ yk < 100. Here δ
and ϵ are small constants that reflect the upper and lower errors due to rounding or
truncation. If log′ x denotes the result of the calculations, show that after k steps we
have

log10 x+ 2 log10(1− δ)− 1/2k < log′ x ≤ log10 x+ 2 log10(1 + ϵ).

We first prove by induction that

x2k(1− δ)2
k+1−1 ≤ 102

k(n+b1/2+···+bk/2
k)x′

k ≤ x2k(1 + ϵ)2
k+1−1.

For k = 0, we have x(1− δ) ≤ 10nx′
0 ≤ x(1 + ϵ), which is given. If this holds up to a

certain k, then if (x′
k)

2 < 10, we have bk+1 = 0, (1− δ)(x′
k)

2 ≤ x′
k+1 ≤ (1 + ϵ)(x′

k)
2 and

x2k+1

(1− δ)2
k+2−1 = (x2k+1

(1− δ)2
k+1−1)2(1− δ)

≤ (102
k(n+b1/2+···+bk/2

k)x′
k)

2(1− δ)

≤ 102
k+1(n+b1/2+···+bk/2

k+bk+1/2
k+1)x′

k+1

≤ (102
k(n+b1/2+···+bk/2

k)x′
k)

2(1 + ϵ)

≤ (x2k(1 + ϵ)2
k+1−1)2(1 + ϵ) = x2k+1

(1 + ϵ)2
k+2−1.

If (x′
k)

2 ≥ 10, we have bk+1 = 1, (1− δ)(x′
k)

2 ≤ 10x′
k+1 ≤ (1 + ϵ)(x′

k)
2 and

x2k+1

(1− δ)2
k+2−1 ≤ (102

k(n+b1/2+···+bk/2
k)x′

k)
2(1− δ)

≤ 102
k+1(n+b1/2+···+bk/2

k)10x′
k+1

= 102
k+1(n+b1/2+···+bk/2

k+bk+1/2
k+1)x′

k+1

≤ (102
k(n+b1/2+···+bk/2

k)x′
k)

2(1 + ϵ)

≤ x2k+1

(1 + ϵ)2
k+2−1.

Then, by taking logarithms on the expression, we get

2k log x+ (2k+1 − 1) log(1− δ) ≤ 2k log′ x+ log x′
k ≤ 2k log x+ (2k+1 − 1) log(1 + ϵ).

Finally, subtracting log x′
k from all sides, using that −1 < − log(1 − δ) − log x′

k =
− log(x′

k(1− δ)), because x′
k(1− δ) < 10, using that − log(1+ ϵ)− log x′

k = − log(x′
k(1+

ϵ)) ≤ 0, because x′
k(1 + ϵ) ≥ 1, and dividing everything by 2k, we get

log x+ 2 log(1− δ)− 1

2k
< log′ x ≤ log x+ 2 log(1 + ϵ),

which is precisely what we wanted to prove.

1.2.3 Sums and products
x 1. [10 ] The text says that a1 + a2 + · · ·+ a0 = 0. What then, is a2 + · · ·+ a0?
We could set that to be −a1.

14
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2. [01 ] What does the notation
∑

1≤j≤n aj mean, if n = 3.14?
a1 + a2 + a3.

x 3. [13 ] Without using the
∑

-notation, write out the equivalent of∑
0≤n≤5

1

2n+ 1
,

and also the equivalent of ∑
0≤n2≤5

1

2n2 + 1
.

Explain why the two results are different, in spite of rule (b).∑
0≤n≤5

1

2n+ 1
=

1

1
+

1

3
+

1

5
+

1

7
+

1

9
+

1

11
,

∑
0≤n2≤5

1

2n2 + 1
=

1

9
+

1

3
+

1

1
+

1

3
+

1

9
,

as the integers with 0 ≤ n2 ≤ 5 are {−2,−1, 0, 1, 2}. Rule (b) states that a permutation
of the integers satisfying the condition doesn’t alter the result, but because n 7→ n2 is
not a permutation of such integers, the rule doesn’t apply.

4. [10 ] Without using the
∑

-notation, write out the equivalent of each side of Eq.
(10) as a sum of sums for the case n = 3.
a11 + a21 + a22 + a31 + a32 + a33 = a11 + a21 + a31 + a22 + a32 + a33.

x 5. [HM20 ] Prove that rule (a) is valid for arbitrary infinite series, provided that the
series converge.
Since infinite series are defined for cases where the total number of nonzero elements is
at most countable, we might assume that the series are indexed by positive integers.
Thus, we’d have to prove that( ∞∑

i=1

ai

) ∞∑
j=1

bj

 =

∞∑
i=1

∞∑
j=1

aibj ,

assuming that the relevant series converge. We have( ∞∑
i=0

ai

) ∞∑
j=0

bj

 =

∞∑
i=0

ai

∞∑
j=0

bj

 =

∞∑
i=0

∞∑
j=0

bj ,

by entering the second series as a constant into the first series (because it converges)
and then entering the element of the first series, considered as a constant, into the inner
series.

15
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x 9. [05 ] Is the derivation of Eq. (14) valid even if n = −1?
The result is ∑

0≤j≤−1

axj = 0 = a

(
1− x0

1− x

)
,

which is correct. However, the derivation is not correct as the rule (d) cannot be applied,
because the applications in the derivation assume n ≥ 0.

10. [05 ] Is the derivation of Eq. (14) valid even if n = −2?
No (see previous exercise).

11. [03 ] What should the right-hand side of Eq. (14) be if x = 1?

Mere substitution in the original formula yields an undefined result, but it’s clear that∑
0≤j≤n

a · 1j =
∑

0≤j≤n

a = (n+ 1)a.

12. [10 ] What is 1 + 1
7 + 1

49 + 1
343 + · · ·+

(
1
7

)n?

By Eq. (14), this is

n∑
k=0

(
1

7

)k

=

(
1−

(
1
7

)n+1

1− 1
7

)
=

1−
(
1
7

)n+1

6
7

=
7

6

(
1− 1

7n+1

)
.

13. [10 ] Using Eq. (15) and assuming that m ≤ n, evaluate
∑n

j=m j.

∑
m≤j≤n

j =
∑

m≤j+m≤n

(j +m) =
∑

0≤j≤n−m

(m+ j) =

= m(n−m+ 1) +
1

2
(n−m)(n−m+ 1) =

1

2
(n(n+ 1)−m(m− 1)).

14. [11 ] Using the result of the previous exercise, evaluate
∑n

j=m

∑s
k=r jk.

n∑
j=m

s∑
k=r

jk =

 n∑
j=m

j

( s∑
k=r

k

)
=

=
1

4
(n(n+ 1)−m(m− 1))(s(s+ 1)− r(r − 1)).
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x 15. [M22 ] Compute the sum 1× 2+2× 22+3× 23+ · · ·+n× 2n for small values of n.
Do you see the pattern developing in these numbers? If not, discover it by manipulations
similar to those leading up to Eq. (14).
Let τ(n) be such a such sum

τ(1) = 2, τ(2) = 2 + 8 = 10, τ(3) = 10 + 24 = 34,

τ(4) = 34 + 64 = 98, τ(5) = 98 + 160 = 258, . . .

Now,

τ(n) =
∑

1≤k≤n

k2k by definition

=
∑

0≤k≤n−1

(k + 1)2k+1 by rule (b)

= 2
∑

0≤k≤n−1

(k + 1)2k by a special case of (a)

= 2

 ∑
0≤k≤n−1

k2k +
∑

0≤k≤n−1

2k

 by rule (c)

= 2

 ∑
0≤k≤n

k2k − n2n + (2n − 1)

 by rule (d) and Eq. (14)

= 2

 ∑
1≤k≤n

k2k − n2n + (2n − 1)

 by rule (d)

This means τ(n) = 2(τ(n)− n2n + 2n − 1) = 2τ(n)− n2n+1 + 2n+1 − 2, so

τ(n) = n2n+1 − 2n+1 + 2 = (n− 1)2n+1 + 2.

x 17. [M00 ] Let S be a set of integers. What is
∑

j∈S 1?
|S|.

x 20. [25 ] Dr. I. J. Matrix has observed a remarkable sequence of formulas:

9× 1 + 2 = 11, 9× 12 + 3 = 111,

9× 123 + 4 = 1111, 9× 1234 + 5 = 11111.

1. Write the good doctor’s great discovery in terms of the
∑

-notation.

2. Your answer to part (a) undoubtedly involves the number 10 as base of the decimal
system; generalize this formula so that you get a formula that will perhaps work
in any base b.

3. Prove your formula from part (b) by using formulas derived in the text or in
exercise 16 above.
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1. For n ≥ 1,

9

n−1∑
j=0

10j(n− j) + n+ 1 =

n∑
j=0

10j .

2.

(b− 1)

n−1∑
j=0

bj(n− j) + n+ 1 =

n∑
j=0

bj .

3. We have
n−1∑
j=0

bj(n− j) = n

n−1∑
j=0

bj −
n−1∑
j=0

jbj

= n
1− bn

1− b
− (n− 1)bn+1 − nbn + b

(b− 1)2

= n
bn − 1

b− 1
− (n− 1)bn+1 − nbn + b

(b− 1)2
,

so

(b− 1)

n−1∑
j=0

bj(n− j) + n+ 1

= n(bn − 1)− (n− 1)bn+1 − nbn + b

b− 1
+ n+ 1

=
n(bn − 1)(b− 1)− (n− 1)bn+1 + nbn − b+ n(b− 1) + b− 1

b− 1

=
nbn+1 − nbn − nb+ n− nbn+1 + bn+1 + nbn − b+ nb− n+ b− 1

b− 1

=
bn+1 − 1

b− 1
=

1− bn+1

b− 1
=

n∑
j=0

bj .

x 21. [M25 ] Derive rule (d) from (8) and (17).∑
R(j)

aj +
∑
S(j)

aj =
∑
j

aj [R(j)] +
∑
j

aj [S(j)] =
∑
j

aj([R(j)] + [S(j)]) =

∑
j

aj([R(j) ∨ S(j)] + [R(j) ∧ S(j)]) =
∑

R(j)∨S(j)

aj +
∑

R(j)∧S(j)

aj .

x 22. [20 ] State the appropriate analogs of Eqs. (5), (7), (8), and (11) for products
instead of sums.∏

R(i)

ai =
∏
R(j)

aj =
∏

R(p(j))

ap(j),
∏
R(i)

∏
S(j)

aij =
∏
S(j)

∏
R(i)

aij ,

∏
R(i)

bici =
∏
R(i)

bi +
∏
R(i)

ci,
∏
R(j)

aj
∏
S(j)

aj =
∏

R(j)∨S(j)

aj
∏

R(j)∧S(j)

aj .
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23. [10 ] Explain why it is a good idea to define
∑

R(j) aj and
∏

R(j) aj as zero and
one, respectively, when no integers satisfy R(j).

Zero and one are the neutral terms for sum and product, respectively, so by defining it
this way, rule (d) (among others) applies independently of whether there are integers
satisfying the properties or not.

x 25. [15 ] Consider the following derivation; is anything amiss?

(
n∑

i=1

ai

) n∑
j=1

1

aj

 =
∑

1≤i≤n

∑
1≤j≤n

ai
aj

=
∑

1≤i≤n

∑
1≤i≤n

ai
ai

=

n∑
i=1

1 = n.

First, the change of variable on the second equality is invalid since it changes to a bound
variable, not to a free variable. Second, it then converts the double summation into a
single summation, which is invalid too.

x 29. [M30 ]

1. Express
∑n

i=0

∑i
j=0

∑j
k=0 aiajak in terms of the multiple-sum notation explained

at the end of the section.

2. Express the same sum in terms of
∑n

i=0 ai,
∑n

i=0 a
2
i , and

∑n
i=0 a

3
i [see Eq. (13)].

1. ∑
0≤k≤j≤i≤n

aiajak.

We have

S :=

n∑
i=0

i∑
j=0

j∑
k=0

aiajak =

n∑
i=0

i∑
j=0

i∑
k=j

aiajak

=

n∑
i=0

n∑
j=i

i∑
k=0

aiajak =

n∑
i=0

i∑
j=0

n∑
k=i

aiajak

=

n∑
i=0

n∑
j=i

j∑
k=i

aiajak =

n∑
i=0

n∑
j=i

n∑
k=j

aiajak.
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Thus,

6S =

n∑
i=0

i∑
j=0

 j∑
k=0

aiajak +

i∑
k=j

aiajak +

n∑
k=i

aiajak


+

n∑
i=0

n∑
j=i

(
i∑

k=0

aiajak +

j∑
k=i

aiajak +

n∑
i=j

aiajak

)

=

n∑
i=0

(
i∑

j=0

(
n∑

k=0

aiajak + aia
2
j + a2

i aj

)
+

n∑
j=i

(
n∑

k=0

aiajak + aia
2
j + a2

jai

))

=

n∑
i=0

(
n∑

j=0

(
n∑

k=0

aiajak + aia
2
j + a2

i aj

)
+

n∑
k=0

a2
i ak + a3

i + a3
i

)

=

n∑
i=0

n∑
j=0

n∑
k=0

aiajak +

n∑
i=0

n∑
j=0

aia
2
j +

n∑
i=0

n∑
j=0

a2
i aj +

n∑
i=0

n∑
k=0

a2
i ak + 2

n∑
i=0

a3
i

=

(
n∑

i=0

ai

)3

+

(
n∑

i=0

ai

)(
n∑

i=0

a2
i

)
+

(
n∑

i=0

a2
i

)(
n∑

i=0

ai

)

+

(
n∑

i=0

a2
i

)(
n∑

i=0

ai

)
+ 2

n∑
i=0

a3
i

=

(
n∑

i=0

ai

)3

+ 3

(
n∑

i=0

ai

)(
n∑

i=0

a2
i

)
+ 2

(
n∑

i=0

a3
i

)
.

This means

S =
1

6

(
n∑

i=0

ai

)3

+
1

2

(
n∑

i=0

ai

)(
n∑

i=0

a2i

)
+

1

3

(
n∑

i=0

a3i

)
.

30. [M23 ] (J. Binet, 1812.) Without using induction, prove the identity n∑
j=1

ajxj

 n∑
j=1

bjyj

 =

 n∑
j=1

ajyj

 n∑
j=1

bjxj

+
∑

1≤j<k≤n

(ajbk−akbj)(xjyk−xkyj).

 n∑
j=1

ajxj

 n∑
j=1

bjyj

 =

n∑
i=1

n∑
j=1

aibjxiyj

=

n∑
i=1

n∑
j=1

aibj(xjyi − xjyi + xiyj)

=

n∑
i=1

n∑
j=1

aibjxjyi +

n∑
i=1

n∑
j=1

aibj(xiyj − xjyi)

=

 n∑
j=1

ajyj

 n∑
j=1

bjxj

+

n∑
i=1

n∑
j=1

aibj(xiyj − xjyi),
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but

n∑
i=1

n∑
j=1

aibj(xiyj − xjyi) =
∑

1≤j<i≤n

aibj(xiyj − xjyi) +
∑

1≤i<j≤n

aibj(xiyj − xjyi)

=
∑

1≤i<j≤n

(ajbi(xjyi − xiyj) + aibj(xiyj − xjyi))

=
∑

1≤j<k≤n

(ajbk − akbj)(xjyk − xkyj).

x 37. [M24 ] Show that the determinant of Vandermonde’s matrix is∏
1≤j≤n

xj

∏
1≤i<j≤n

(xj − xi).

We show this by induction. For n = 1, this is obvious. For n > 1, assuming this holds
for n− 1, subtracting from each row the previous one multiplied by x1, expanding by
cofactors, factoring out, and applying the induction hypothesis, we have∣∣∣∣∣∣∣∣∣

x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

...
...

...
xn
1 xn

2 · · · xn
n

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
x1 x2 · · · xn

0 x2(x2 − x1) · · · xn(xn − x1)
...

...
...

0 xn−1
2 (x2 − x1) · · · xn−1

n (xn − x1)

∣∣∣∣∣∣∣∣∣
= x1

∣∣∣∣∣∣∣
x2(x2 − x1) · · · xn(xn − x1)

...
...

xn−1
2 (x2 − x1) · · · xn−1

n (xn − x1)

∣∣∣∣∣∣∣
= x1(x2 − x1) · · · (xn − x1)

∣∣∣∣∣∣∣
x2 · · · xn

...
...

xn−1
2 · · · xn−1

n

∣∣∣∣∣∣∣
= x1

∏
2≤j≤n

(xj − x1)
∏

2≤j≤n

xj

∏
2≤i<j≤n

(xj − xi)

=
∏

1≤j≤n

xj

∏
1≤i<j≤n

(xj − xi).

x 38. [M25 ] Show that the determinant of Cauchy’s matrix is

∏
1≤i<j≤n

(xj − xi)(yj − yi)

/ ∏
1≤i,j≤n

(xi + yj).

We prove it by induction. For n = 1, this is obvious. Now assume n > 1 and that the
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hypothesis holds for n− 1. Multiplying each row i by x1+y1

xi+y1
times the first row, we get∣∣∣∣∣∣∣∣∣

1
x1+y1

1
x1+y2

· · · 1
x1+yn

1
x2+y1

1
x2+y2

· · · 1
x2+yn

...
...

...
1

xn+y1

1
xn+y2

· · · 1
xn+yn

∣∣∣∣∣∣∣∣∣ =

=

∣∣∣∣∣∣∣∣∣∣

1
x1+y1

1
x1+y2

· · · 1
x1+yn

0 1
x2+y2

− x1+y1

(x1+y2)(x2+y1)
· · · 1

x2+yn
− x1+y1

(x1+yn)(x2+y1)

...
...

...
0 1

xn+y2
− x1+y1

(x1+y2)(xn+y1)
· · · 1

xn+yn
− x1+y1

(x1+yn)(xn+y1)

∣∣∣∣∣∣∣∣∣∣
=

=
1

x1 + y1

∣∣∣∣∣∣∣∣
1

x2+y2
− x1+y1

(x1+y2)(x2+y1)
· · · 1

x2+yn
− x1+y1

(x1+yn)(x2+y1)

...
...

1
xn+y2

− x1+y1

(x1+y2)(xn+y1)
· · · 1

xn+yn
− x1+y1

(x1+yn)(xn+y1)

∣∣∣∣∣∣∣∣ .
Now,

1

xi + yj
− x1 + y1

(x1 + yj)(xi + y1)
=

(x1 + yj)(xi + y1)− (x1 + y1)(xi + yj)

(xi + yj)(x1 + yj)(xi + y1)
=

=
1

xi + yj

x1y1 + xiyj − x1yj − xiy1
(x1 + yj)(xi + y1)

=
1

xi + yj

(xi − x1)(yj − y1)

(x1 + yj)(xi + y1)
,

so ∣∣∣∣∣∣∣∣∣
1

x1+y1

1
x1+y2

· · · 1
x1+yn

1
x2+y1

1
x2+y2

· · · 1
x2+yn

...
...

...
1

xn+y1

1
xn+y2

· · · 1
xn+yn

∣∣∣∣∣∣∣∣∣ =

=
1

x1 + y1

∣∣∣∣∣∣∣∣
1

x2+y2

(x2−x1)(y2−y1)
(x1+y2)(x2+y1)

· · · 1
x2+yn

(x2−x1)(yn−y1)
(x1+yn)(x2+y1)

...
...

1
xn+y2

(xn−x1)(y2−y1)
(x1+y2)(xn+y1)

· · · 1
xn+yn

(xn−x1)(yn−y1)
(x1+yn)(xn+y1)

∣∣∣∣∣∣∣∣ =

=
1

x1 + y1

n∏
i=2

xi − x1

xi + y1

n∏
j=2

yj − y1
x1 + yj

∣∣∣∣∣∣∣
1

x2+y2
· · · 1

x2+yn

...
...

1
xn+y2

· · · 1
xn+yn

∣∣∣∣∣∣∣ =
=

∏n
j=2(xj − x1)(yj − y1)

(x1 + y1)
∏n

i=2(xj + y1)
∏n

j=2(x1 + yj)

∏
2≤i<j≤n(xj − xi)(yj − yi)∏

2≤i,j≤n(xi + yj)
=

=
∏

1≤i<j≤n

(xj − xi)(yj − yi)

/ ∏
1≤i,j≤n

(xi + yj).

x 45. [M25 ] A Hilbert matrix, sometimes called an n × n segment of the (infinite)
Hilbert matrix, is a matrix for which aij = 1/(i+ j − 1). Show that this is a special
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case of Cauchy’s matrix, find its inverse, show that each element of the inverse is an
integer and show that the sum of all elements of the inverse is n2. The solution to this
problem requires an elementary knowledge of factorial and binomial coefficients, which
are discussed in sections 1.2.5 and 1.2.6.
Clearly this is the Cauchy’s matrix aij = 1/(xi + yj) where xi = i and yj = j− 1. Then
the elements of the inverse, by exercise 41, are given by

bij =

 ∏
1≤k≤n

(xj + yk)(xk + yi)

/(xj + yi)

( ∏
1≤k≤n
k ̸=j

(xj − xk)

)( ∏
1≤k≤n
k ̸=i

(yi − yk)

)

=

(∏
k

(j + k − 1)(i+ k − 1)

)/
(i+ j − 1)

(∏
k ̸=j

(j − k)

)(∏
k ̸=i

(i− k)

)

=
(j + n− 1)!(i+ n− 1)!

(j − 1)!(i− 1)!

/
(i+ j − 1)(−1)i+j(n− j)!(j − 1)!(n− i)!(i− 1)!

= (−1)i+j (j + n− 1)!(i+ n− 1)!

(i+ j − 1)(n− j)!(n− i)!(j − 1)!2(i− 1)!2
.

We have used that∏
k ̸=j

(j − k) = (−1)n
∏
k ̸=j

(k − j) = (−1)n
∏

j<k≤n

(k − j)
∏

1≤k<j

(k − j) =

= (−1)n+j(n− j)!(j − 1)!,

and the same happens to i. Then,

bij =
(−1)i+jij

i+ j − 1

(i+ n− 1)!(j + n− 1)!

i!(i− 1)!(n− i)!j!(j − 1)!(n− j)!

=
(−1)i+jij

i+ j − 1

(
n

i

)
(i+ n− 1)!

n!(i− 1)!

(
n

j

)
(j + n− 1)!

n!

=
(−1)i+jij

i+ j − 1

(
n

i

)(
i+ n− 1

n

)(
n

j

)(
j + n− 1

n

)
=

(−1)i+jij

i+ j − 1

(
n

i

)(
−i
n

)(
n

j

)(
−j
n

)
=

(−1)i+jij

i+ j − 1

(
−j
i

)(
−j − i

n− i

)(
−i
n

)(
n

j

)
=

(−1)i+jij

i+ j − 1

(
i+ j − 1

i

)(
n+ j − 1

n− i

)(
n+ i− 1

n

)(
n

j

)
= (−1)i+j

(
i+ j − 2

i− 1

)(
i+ n− 1

i− 1

)(
j + n− 1

n− 1

)(
n

j

)
∈ Z.

Finally, from exercise 44,∑
i,j

bij =

n∑
i=1

i+

n∑
j=1

(j − 1) =
n(n+ 1)

2
+

n(n− 1)

2
= n2.
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1.2.4 Integer Functions and Elementary Number Theory
1. [00 ] What are ⌊1.1⌋, ⌊−1.1⌋, ⌈−1.1⌉, ⌊0.99999⌋, and ⌊lg 35⌋?
⌊1.1⌋ = 1, ⌊−1.1⌋ = −2, ⌈−1.1⌉ = −1, ⌊0.99999⌋ = 0, ⌊lg 35⌋ = 5.

x 2. [01 ] What is ⌈⌊x⌋⌉?
The same as ⌊x⌋.

3. [10 ] Let n be an integer, and let x be a real number. Prove that

1. ⌊x⌋ < n if and only if x < n;

2. n ≤ ⌊x⌋ if and only if n ≤ x;

3. ⌈x⌉ ≤ n if and only if x ≤ n;

4. n < ⌈x⌉ if and only if n < x;

5. ⌊x⌋ = n if and only if x− 1 < n ≤ x, and if and only if n ≤ x < n+ 1.

6. ⌈x⌉ = n if and only if x ≤ n < x+ 1, and if and only if n− 1 < x ≤ n.

1.=⇒ ] By contraposition, if x ≥ n, then n is an integer less than or equal to x and
so ⌊x⌋ ≥ n.

⇐= ] ⌊x⌋ ≤ x < n.

2. It’s the contrapositive of the previous statement.

3. Derived from the previous statement replacing x and n with −x and −n and
using that ⌊−x⌋ = −⌈x⌉.

4. It’s the contrapositive of the previous statement.

5. 1 =⇒ 2] Obviously n = ⌊x⌋ ≤ x, and if x−1 ≥ n then it would be x ≥ n+1 ∈ Z
and ⌊x⌋ ≥ n+ 1 > n#.

2 =⇒ 3] Multiply the inequality by −1 and add x+ n to each member.
3 =⇒ 1] n ≤ x and any m ∈ Z with m ≤ x has m < n+ 1 and therefore m ≤ n,

so n = max{m ∈ Z | m ≤ x} = ⌊x⌋.

6. Derived from the previous statement by replacing x and n with −x and −n and
using that −⌈x⌉ = ⌊−x⌋.

x 4. [M10 ] Using the previous exercise, prove that ⌊−x⌋ = −⌈x⌉.
Since that would be circular reasoning (I did the previous exercise before reading the
statement of this one), we’ll prove it directly.

⌊−x⌋ = n ⇐⇒ ∀m ∈ Z, (m ≤ −x =⇒ m ≤ n)

⇐⇒ ∀m ∈ Z, (−m ≥ x =⇒ −m ≥ −n)
⇐⇒ ∀m ∈ Z, (m ≥ x =⇒ m ≥ −n) ⇐⇒ −n = ⌈x⌉ ⇐⇒ n = −⌈x⌉.
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x 6. [20 ] Which of the following equations are true for all positive real numbers x?

1.
⌊√
⌊x⌋
⌋
= ⌊
√
x⌋;

2.
⌈√
⌈x⌉
⌉
= ⌈
√
x⌉;

3.
⌈√
⌊x⌋
⌉
= ⌈
√
x⌉.

1. True, if n = ⌊
√
x⌋, then n ≤

√
x < n + 1, so n2 ≤ ⌊x⌋ ≤ x < (n + 1)2 and so

n ≤
√
⌊x⌋ < n+ 1 and n =

⌊√
⌊x⌋
⌋
.

2. True, if n = ⌈
√
x⌉, then n − 1 <

√
x ≤ n and (n − 1)2 < x ≤ ⌈x⌉ ≤ n, so

n− 1 <
√
⌈x⌉ ≤ n and therefore

⌈√
⌈x⌉
⌉
= n.

3. False, for example
⌈√
⌊ 92⌋
⌉
= ⌈
√
4⌉ = 2 but ⌈

√
9
2⌉ = 3.

8. [00 ] What are 100 mod 3, 100 mod 7, −100 mod 7, −100 mod 0?
100 mod 3 = 1, 100 mod 7 = 2, −100 mod 7 = −2 mod 7 = 5, −100 mod 0 = −100.

9. [05 ] What are 5 mod −3, 18 mod −3, −2 mod −3?
5 mod −3 = 5− (−3)⌊ 5

−3⌋ = 5+ 3(−2) = 5− 6 = −1, 18 mod −3 = 18− (−3)(−6) = 0,
−2 mod −3 = −2− (−3)⌊−2

−3⌋ = −2.

x 10. [10 ] What are 1.1 mod 1, 0.11 mod .1, 0.11 mod −.1?

1.1 mod 1 = 1.1− ⌊1.1⌋ = .1,

0.11 mod .1 = .11− .1⌊1.1⌋ = .01,

0.11 mod −.1 = .11− (−.1)⌊−1.1⌋ = −.09.

11. [00 ] What does “x ≡ y mod 0” mean by our conventions?
It means x = x mod 0 = y mod 0 = y.

12. [00 ] What integers are relatively prime to 1?
All of them, since gcd{a, 1} = 1 for any a ∈ Z.

13. [M00 ] By convention, we say that the greatest common divisor of 0 and n is |n|.
What integers are relatively prime to 0?
Only 1 and −1.
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x 14. [12 ] If x mod 3 = 2 and x mod 5 = 3, what is x mod 15?

This is a simple Diophantine equation, there exist n,m ∈ Z such that

x = 3n+ 2 = 5m+ 3,

so 3n − 5m = 1 and one solution is n = 2 and m = 1. In this case x mod 15 =
(3n+ 2) mod 15 = 8, and the Chinese remainder theorem tells us that this is the only
possibility.

15. [10 ] Prove that z(x mod y) = (zx) mod (zy).

If z = 0, then z(x mod y) = 0 = 0 mod 0 = (zx) mod (zy). If y = 0, z(x mod y) =
zx = (zx) mod (zy). If y, z ̸= 0,

(zx) mod (zy) = zx− zy

⌊
zx

zy

⌋
= zx− zy

⌊
x

y

⌋
= z

(
x− y

⌊
x

y

⌋)
= z(x mod y).

16. [M10 ] Assume that y > 0. Show that if (x− z)/y is an integer and if 0 ≤ z < y,
then z = x mod y.

In this case, there exists an integer k such that x− z = ky, so z = x− ky and we just
have to show that k = ⌊xy ⌋. But since 0 ≤ z < y, 0 ≤ z

y < 1 and, multiplying this
formula by −1 and adding x

y , x
y − 1 < x

y −
z
y = k ≤ x

y , which means that k = ⌊xy ⌋ by
Exercise 3.

x 19. [M10 ] (Law of inverses.) If n⊥m, there is an integer n′ such that nn′ ≡ 1 (modulo
m). Prove this, using the extension of Euclid’s algorithm (Algorithm 1.2.1E).

We already know that the algorithm terminates and that returns a, b ∈ Z such that
am + bn = d := gcd{n,m}. But in this case d = 1, so bn = d − am = 1 − am = 1
(modulo m).

x 22. [M10 ] Give an example to show that Law B is not always true if a is not relatively
prime to m.

Let a = b = 3, x = 2, y = 4, and m = 6 in Law B, then ax = 6 ≡ 12 = by and a = 3 = b
but x = 2 ̸≡ 4 = y.

23. [M10 ] Give an example to show that Law D is not always true if r is not relatively
prime to s.

If a = 6, b = 12, r = 3, and s = 6, in Law D, then a = 6 ≡ 12 = b modulo r = 3 and
modulo s = 6 but not modulo rs = 18.
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x 24. [M20 ] To what extent can Laws A, B, C, and D be generalized to apply to
arbitrary real numbers instead of integers?
Let’s check the laws one by one.

Law A If a, b, x, y,m ∈ R, if m = 0 the law is trivial. If not, we have a −m⌊ a
m⌋ =

b−m⌊ b
m⌋ and x−m⌊ x

m⌋ = y −m⌊ y
m⌋, and for addition

a+ x−m

⌊
a+ x

m

⌋
= b+ y −m

⌊
b+ y

m

⌋
⇐⇒

⇐⇒ m

(⌊
a+ x

m

⌋
−
⌊
b+ y

m

⌋)
=

= a+ x− b− y = m

(⌊ a
m

⌋
+
⌊ x
m

⌋
−
⌊
b

m

⌋
−
⌊ y

m

⌋)
⇐⇒

⇐⇒
⌊
a+ x

m

⌋
−
⌊ a
m

⌋
−
⌊ x
m

⌋
=

⌊
b+ y

m

⌋
−
⌊
b

m

⌋
−
⌊ y

m

⌋
.

Now, ⌊ a
m

⌋
+
⌊ x
m

⌋
≤ a+ x

m
<
⌊ a
m

⌋
+
⌊ x
m

⌋
+ 2,

so
⌊
a+x
m

⌋
is either

⌊
a
m

⌋
+
⌊

x
m

⌋
or
⌊

a
m

⌋
+
⌊

x
m

⌋
+ 1, and similarly for b and y. But⌊

a+ x

m

⌋
=
⌊ a
m

⌋
+
⌊ x
m

⌋
⇐⇒

⌊ a
m

⌋
+
⌊ x
m

⌋
≤ a+ x

m
<
⌊ a
m

⌋
+
⌊ x
m

⌋
+1 ⇐⇒

⇐⇒ a+ x < m
⌊ a
m

⌋
+m

⌊ x
m

⌋
+m ⇐⇒

⇐⇒ (a mod m) + (x mod m) = (b mod m) + (x mod m) < m ⇐⇒

⇐⇒
⌊
b+ y

m

⌋
=

⌊
b

m

⌋
+
⌊ y

m

⌋
,

which proves the equality in the last line of the first formula. For subtraction, we
have to see that −x ≡ −y mod m and so a− x = a+ (−x) ≡ a+ (−y) = a− y
(mod m). If x mod m = 0, then x

m ∈ Z, so − x
m ∈ Z and −x mod m = 0,

and similarly y mod m = 0 and so −y mod m = 0. Otherwise x
m /∈ Z, so

⌈ x
m⌉ = ⌊

x
m⌋+ 1, but by Exercise 4,

−x mod m = −x−m

⌊
−x
m

⌋
= −x+m

⌈ x
m

⌉
= −x+m

⌊ x
m

⌋
+m =

= m− (x mod m) = m− (y mod m) = −y mod m.

For multiplication this doesn’t hold; for example, if m = 2.5, a = 0.5, b =
−2, and x = y = 2.2, then ax mod m = 1.1 mod 2.5 = 1.1 but by mod m =
−4.4 mod 2.5 = 0.6.

Law B Obviously a and m must be integers, otherwise the statement wouldn’t make
sense. Even then, however, if a = 1, b = −2, x = 4

3 , y = 7
3 , and m = 3, then

ax = 4
3 ≡ −

14
3 = by and a = 1 ≡ −2 = b, but 4

3 ̸≡
7
3 .
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Law C Using Exercise 15, for a, b,m, n ∈ R with n ̸= 0,

a ≡ b mod m ⇐⇒ a mod m = b mod m ⇐⇒
⇐⇒ an mod mn = n(a mod m) = n(b mod m) = bn mod mn ⇐⇒

⇐⇒ an ≡ bn mod mn.

Note that the second double implication would not hold in the left direction for
n = 0.

Law D Here r and s must be integers. Then, if a, b ∈ R with a ≡ b modulo r and s,
if r = 0 or s = 0, the statement is obvious, and otherwise a − r⌊ar ⌋ = b − r⌊ br ⌋
and so a − b = r(⌊ar ⌋ − ⌊

b
r ⌋) =: d ∈ Z. By Law A, since a ≡ b and b ≡ b,

d = a− b ≡ b− b = 0 modulo both r and s, so from Law D for integers we have
a− b ≡ 0 modulo rs (assuming r⊥s) and so a ≡ b modulo rs.

Thus, Law A holds for addition and subtraction, Law C always holds, and Law D holds
if we still maintain r, s ∈ Z.

25. [M02 ] Show that, according to Theorem F, ap−1 mod p = [a is not a multiple of p],
whenever p is a prime number.
If a is a multiple of p, then so is ap−1 and ap−1 mod p = 0. Otherwise a⊥p, so we can
cancel out in ap ≡ a (mod p) to get ap−1 ≡ 1 (mod p) and so ap−1 mod p = 1 mod p =
1.

x 28. [M25 ] Show that the method used to prove Theorem F can be used to prove
the following extension, called Euler’s theorem: aφ(m) ≡ 1 (mod m), for any positive
integer m, when a⊥m. (In particular, the number n′ in exercise 19 may be taken to be
nφ(m)−1 mod m.)
First, gcd{x, y} ≡ gcd{x + ky, y} for any x, y, k ∈ Z, because if z | x and z | y then
obviously z | x+ ky and if z | x+ ky and z | y then z | x, so the set of common divisors
is the same. It’s also clear that if x⊥z and y⊥z then xy⊥z, since neither x nor y has
common divisors with z and so neither does xy.

With these lemmas, we are ready to prove the statement. Let

{x1, . . . , xφ(m)} := {x ∈ {0, . . . ,m− 1} | x⊥m},

then the xia mod m are all distinct, for if xia mod m = xja mod m, since a⊥m, then
xi = xi mod m = xj mod m = xj . Since xi, a⊥m, xia⊥m and also (xia mod m)⊥m, so
all the xia mod m are different and relatively prime to m and therefore {xia mod m}i =
{xi}i. Thus ∏

i

xi ≡
∏
i

(xia mod m) ≡
∏
i

xia ≡ aφ(m)
∏
i

xi (mod m),

and therefore using Law B with the fact that
∏

i xi⊥m gives us the result.
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x 34. [M21 ] What conditions on the real number b > 1 are necessary and sufficient to
guarantee that ⌊logb x⌋ = ⌊logb⌊x⌋⌋ for all real x ≥ 1?

It happens if and only if b ∈ Z. To prove this, observe that, since the logarithm in
base b > 1 is strictly increasing, logb⌊x⌋ < logb x, so ⌊logb x⌋ ̸= ⌊logb⌊x⌋⌋ if and only
if ⌊logb⌊x⌋⌋ < ⌊logb x⌋, that is, if there exists an integer k (namely ⌊logb x⌋) such that
logb⌊x⌋ < k ≤ logb x, if and only if ⌊x⌋ < bk ≤ x.

If b ∈ Z, bk ∈ Z as well, so that would mean that ⌊x⌋+ 1 ≤ bk ≤ x#.
If b /∈ Z, we just have to set x = b and k = 1.

x 35. [M20 ] Given that m and n are integers and n > 0, prove that

⌊(x+m)/n⌋ = ⌊(⌊x⌋+m)/n⌋

for all real x. (When m = 0, we have an important special case.) Does an analogous
result hold for the ceiling function?

Clearly
⌊
⌊x⌋+m

n

⌋
≤
⌊
x+m
n

⌋
. If this inequality were strict, however, there would be an

integer k such that ⌊x⌋+m
n < k ≤ x+m

n , and so ⌊x⌋ < nk−m ≤ x, but this is impossible
because nk −m ∈ Z.

For the ceiling, clearly
⌈
⌈x⌉+m

n

⌉
≥
⌈
x+m
n

⌉
, but if this inequality were strict, there

would be an integer k (namely
⌈
x+m
n

⌉
) such that x+m

n ≤ k < ⌈x⌉+m
n , and so x ≤

nk −m < ⌈x⌉, an absurdity because nk −m ∈ Z.

1.2.5 Permutations and Factorials

1. [00 ] How many ways are there to shuffle a 52-card deck?

52! = 80658175170943878571660636856403766975289505440883277824000000000000.

2. [10 ] In the notation of Eq. (2), show that pn(n−1) = pnn, and explain why this
happens.

pn(n−1) = n(n − 1) · · · (n − (n − 1) + 1) = n(n − 1) · · · 2 = n(n − 1) · · · 1 = pnn. This
is because pn(n−1) is the number of ways to take and arrange n− 1 objects out n and
pnn is the number of ways to take and arrange the n objects, which consists of first
arranging n− 1 objects out of the n objects and then adding the one remaining.

3. [10 ] What permutations of {1, 2, 3, 4, 5} would be constructed from the permutation
3 1 2 4 using Methods 1 and 2, respectively?

1. Method 1: 5 3 1 2 4, 3 5 1 2 4, 3 1 5 2 4, 3 1 2 5 4, 3 1 2 4 5.

2. Method 2: 4 2 3 5 1, 4 1 3 5 2, 4 1 2 5 3, 3 1 2 5 4, 3 1 2 4 5.
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x 4. [13 ] Given the fact that log10 1000! = 2567.60464..., determine exactly how many
decimal digits are present in the number 1000!. What is the most significant digit?
What is the least significant digit?
Given a number x with n+ 1 digits xnxn−1 · · ·x1x0, we have xn10

n ≤ x < (xn + 1)10n

and therefore n+ log10 xn ≤ log x < n+ log10(xn + 1), with 0 ≤ log10 Xn < log10(xn +
1) ≤ 1. Thus, 1000! has 2568 digits and the most significant digit is 4, since log10 4 =
0.60205... and log10 5 = 0.69897.... Furthermore, since 10 | 1000!, the least significant
digit is 0.

x 6. [17 ] Using Eq. (8), write 20! as a product of prime factors.
Numbers up to 20 have prime factors up to 20, so the prime factors are 2, 3, 5, 7, 11,
13, 17, and 19. For the multiplicities,

µ2 =
∑
k≥1

⌊
20

2k

⌋
= 10 + 5 + 2 + 1 = 18, µ11 =

∑
k≥1

⌊
20

11k

⌋
= 1,

µ3 =
∑
k≥1

⌊
20

3k

⌋
= 6 + 2 = 8, µ13 =

∑
k≥1

⌊
20

13k

⌋
= 1,

µ5 =
∑
k≥1

⌊
20

5k

⌋
= 4, µ17 =

∑
k≥1

⌊
20

17k

⌋
= 1,

µ7 =
∑
k≥1

⌊
20

7k

⌋
= 2, µ19 =

∑
k≥1

⌊
20

19k

⌋
= 1,

so 20! = 218385472 · 11 · 13 · 17 · 19.

7. [M10 ] Show that the “generalized termial” function in Eq. (10) satisfies the identity
x? = x+ (x− 1)? for all real numbers x.
x+ (x− 1)? = x+ 1

2 (x− 1)x = 1
22x+ 1

2 (x− 1)x = 1
2 (x+ 1)x = x?.

9. [M10 ] Determine the values of Γ( 12 ) and Γ(− 1
2 ), given that ( 12 )! =

√
π/2.

( 12 )! =
1
2Γ(

1
2 ) =⇒ Γ( 12 ) = 2( 12 )! =

√
π,

− 1
2Γ(−

1
2 ) = Γ(12 ) =⇒ Γ(− 1

2 ) = −2Γ(
1
2 ) = −2

√
π.

x 10. [HM20 ] Does the identity Γ(x+ 1) = xΓ(x) hold for all real numbers x?
No, as it doesn’t hold when Γ(x) or Γ(x+ 1) are not defined. However, when they are
defined,

xΓ(x) = x lim
m

mxm!∏m
i=0(x+ i)

= lim
m

mxm!∏m
i=1(x+ i)

= lim
m

(m+ 1)x(m+ 1)!∏m+1
i=1 (x+ i)

=

= lim
m

(m+ 1)x+1m!∏m
i=0(x+ 1 + i)

= lim
m

(
mx+1m!∏m

i=0((x+ 1) + i)

(
m+ 1

m

)x+1
)

= Γ(x+ 1) · 1.
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Note that, if x ∈ Z−, then the terms from m = −x onward are not defined, so this is
not the scenario we are dealing with. For ant other value, this holds.

11. [M15 ] Let the representation of n in the binary system be n = 2e1 +2e2 + · · ·+2er ,
where e1 > e2 > · · · > er ≥ 0. Show that n! is divisible by 2n−r but not by 2n−r+1.
This is exactly to say that, for p = 2, µ = n − r. But r is the sum of all bits of n in
base 2, so by Exercise 12, µ = 1

2−1 (n− r) = n− r.

x 12. [M22 ] (A. Legendre, 1808.) Generalizing the result of the previous exercise, let
p be a prime number, and let the representation of n in the p-ary number system be
n = akp

k + ak−1p
k−1 + · · ·+ a1p+ a0. Express the number µ of Eq. (8) in a simple

formula involving n, p, and a’s.
The question makes sense for n ∈ N∗. Then, given that the previous exercise showed
that, for p = 2, µ = n − r, where r := |{k ∈ N | ak ̸= 0}| =

∑
k ak, a guess is that

µ = n−
∑

k ak for any other positive prime integer p as well, that is, n− µ =
∑

k ak.
To prove this,

µ =
∑
j≥1

⌊
n

pj

⌋
=

k∑
j=1

k∑
i=j

aip
i−j =

∑
1≤j≤i≤k

aip
i−j =

k∑
i=1

ai

i−1∑
j=0

pj

 =

k∑
i=1

ai(p
i − 1)

p− 1
,

where the latter identity is because of the cyclotomic formula. Then,

k∑
i=1

ai(p
i − 1)

p− 1
=

1

p− 1

(
k∑

i=1

aip
i −

k∑
i=1

ai

)
=

1

p− 1

(n− a0)−
∑
i≥1

ai


=

1

p− 1

n−
∑
i≥0

ai

 .

x 22. [HM20 ] Try to put yourself in Euler’s place, looking for a way to generalize
n! to noninteger values of n. Since (n + 1

2 )!/n! times ((n + 1
2 ) +

1
2 )!/(n + 1

2 )! equals
(n + 1)!/n! = n + 1, it seems natural that (n + 1

2 )!/n! should be approximately
√
n.

Similarly, (n+ 1
3 )!/n! should be ≈ 3

√
n. Invent a hypothesis about the ratio (n+ x)!/n!

as n approaches infinity. Is your hypothesis correct when x is an integer? Does it tell
anything about the appropriate value of x! when x is not an integer?

The previous examples show (n+ 1
m )!

n! ≈ m
√
n = n

1
m , which is to say that (n+x)!

n! ≈ nx for
x = 1

m . As n gets bigger, the approximation should probably be more accurate for the
same value of x, so we could see that (n+ x)! ≈ nxn!. For a non-negative integer x,
(n + x)! = (n+ 1) · · · (n+ x) · n!, so as n gets bigger the approximation is more and
more precise, and in fact,

lim
n

nxn!

(n+ x)!
= lim

n

nx

(n+ 1) · · · (n+ x)
= lim

n

x∏
k=1

n

n+ k
= 1.
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Multiplying by x!,

x! = lim
n

nxx!n!

(n+ x)!
= lim

n
(nxn!)

x!

(n+ x)!
= lim

n

nxn!

(x+ 1) · · · (x+ n)
,

which is Euler’s factorial formula.

x 24. [HM21 ] Prove the handy inequalities

nn

en−1
≤ n! ≤ nn+1

en−1
, integer n ≥ 1.

(Looking at the answers.) We have

nn

n!
=

n∏
k=1

n

k
=

n−1∏
k=1

n

k
=

n−1∏
k=1

n−1∏
j=k

j + 1

j
=

∏
1≤k≤j<n

j + 1

j
=

n−1∏
j=1

(
j + 1

j

)j

=

=
n−1∏
j=1

(
1 +

1

j

)j

≤
n−1∏
j=1

(
e1/j

)j
= en−1,

where for the inequality we use that 1 + x ≤ ex for all real x. Likewise,

nn+1

n!
= n

nn

n!
= n

n−1∏
j=1

(
j + 1

j

)j

=

n−1∏
j=1

j + 1

j

n−1∏
j=1

(
j + 1

j

)j

=

n−1∏
j=1

(
j + 1

j

)j+1

=

=

n∏
j=2

(
j

j − 1

)j

=

n∏
j=2

(
1− 1

j

)−j

≥
n∏

j=2

(
e−1/j

)−j

= en−1.

1.2.6 Binomial Coefficients

1. [00 ] How many combinations of n things taken n− 1 at a time are possible?(
n

n−1

)
= n!

1!(n−1)! = n.

2. [00 ] What is
(
0
0

)
?(

0
0

)
= 1!

1!1! = 1.

3. [00 ] How many bridge hands (13 cards out of a 52-card deck) are possible?(
52
13

)
= 635013559600.
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4. [10 ] Give the answer to exercise 3 as a product of prime numbers.
We have

(
52
13

)
= 52!

13!39! . Using Equation 1.2.5.8:

52! = 24932351278114134173192232 · 29 · 31 · 37 · 41 · 43 · 47,
39! = 2353185875113133172192 · 23 · 29 · 31 · 37
13! = 2103552 · 7 · 11 · 13(
52

13

)
= 245272 · 17 · 23 · 41 · 43 · 47.

x 5. [05 ] Use Pascal’s triangle to explain the fact that 114 = 14641.
114 = (10 + 1)4 =

(
4
0

)
10410 +

(
4
1

)
10311 +

(
4
2

)
10212 +

(
4
3

)
10113 +

(
4
4

)
10014 = 14641. The

pattern works for the number 11 in any given base until the number 10 or higher
appears, which in this case happens in the next row.

x 6. [10 ] Pascal’s triangle (Table 1) can be extended in all directions by use of the
addition formula, Eq. (9). Find the three rows that go on top of Table 1 (i.e. for
r = −1, −2, and −3).
The table is based on the properties that

(
r
k

)
=
(
r−1
k

)
+
(
r−1
k−1

)
and that

(
r
k

)
= 0 for

k < 0. This implies that
(
r
0

)
= 1 for any r ∈ Z (really for any r ∈ R) and that(

r−1
k

)
=
(
r
k

)
−
(
r−1
k−1

)
(the one below in the table minus the one on the left).

r
(
r
0

) (
r
1

) (
r
2

) (
r
3

) (
r
4

) (
r
5

) (
r
6

) (
r
7

) (
r
8

) (
r
9

)
−3 1 −3 6 −10 15 −21 28 −36 45 −55
−2 1 −2 3 −4 5 −6 7 −8 9 −10
−1 1 −1 1 −1 1 −1 1 −1 1 −1

8. [00 ] What property of Pascal’s triangle is reflected in the “symmetry condition,”
Eq. (6)?
The symmetry of each row r with center in k = r

2 .

9. [01 ] What is the value of
(
n
n

)
? (Consider all integers n.)

For n ≥ 0,
(
n
n

)
= n!

n!1! = 1. For n < 0, by definition
(
n
n

)
= 0.

x 10. [M25 ] If p is prime, show that:

1.
(
n
p

)
≡
⌊
n
p

⌋
(mod p).

2.
(
p
k

)
≡ 0 (mod p), for 1 ≤ k ≤ p− 1.

3.
(
p−1
k

)
≡ (−1)k (mod p), for 0 ≤ k ≤ p− 1.

4.
(
p+1
k

)
≡ 0 (mod p), for 2 ≤ k ≤ p− 1.
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5. (É. Lucas, 1877.) (
n

k

)
≡
(
⌊n/p⌋
⌊k/p⌋

)(
n mod p

k mod p

)
(mod p).

6. If the representations of n and k in the p-ary number system are

n = arp
r + · · ·+ a1p+ a0,

k = brp
r + · · ·+ b1p+ b0,

then
(
n

k

)
≡
(
ar
br

)
· · ·
(
a1
b1

)(
a0
b0

)
(mod p).

We assume n ∈ Z and k ∈ N.

1. Using part 5,(
n

p

)
≡
(
⌊n/p⌋
⌊p/p⌋

)(
n mod p

p mod p

)
=

(
⌊n/p⌋
1

)(
n mod p

0

)
=

⌊
n

p

⌋
· 1.

2.
(
p
k

)
= p!

k!(p−k)! , but neither k! nor (p− k)! divide p while p! does, so p |
(
p
k

)
.

3. We prove it by induction on k. For k = 0,
(
p−1
0

)
= 1 = (−1)0, so the equation

holds. For 1 ≤ k ≤ p− 1,(
p− 1

k

)
=

(
p

k

)
−
(
p− 1

k − 1

)
≡ 0− (−1)k−1 = (−1)k (mod p),

where for the equivalence we use the previous part of the exercise and the induction
hypothesis.

4. Using part 2, (
p+ 1

k

)
=

(
p

k

)
+

(
p

k − 1

)
≡ 0− 0 = 0 (mod k).

5. If k < 0, then
(
n
k

)
= 0 and

(⌊n/p⌋
⌊k/p⌋

)
= 0. Now let’s prove this for k ≥ 0. First, note

that, if a, b, c, d ∈ Z, a
b ,

c
d ∈ Z, and a ≡ c and 0 ̸≡ b ≡ d (mod p), then

a

b
≡ c

d
(mod p).

Effectively, let a = jp+ b c = kp+ d for some integers j and k, then

a

b
− c

d
=

ad− bc

bd
=

(jd− bk)p

bd
,

which is a multiple of p because it’s an integer and, since bd ∤ p, it follows that
bd | jd− bk. Now, let n =: n′p+ n0 and k =: k′p+ k0 with n′, n0, k

′, k0 ∈ Z and
0 ≤ n0, k0 < p. Clearly n0 ≡ n and k0 ≡ k (modulo p), and then(

n

k

)
=

k∏
j=1

n+ 1− j

j
=

 pk′∏
j=1

n+ 1− j

j

 k0∏
j=1

pn′ + n0 + 1− pk′ − j

j + pk′


≡

 pk′∏
j=1

n+ 1− j

j

 k0∏
j=1

n0 + 1− j

j

 =

(
n

pk′

)(
n0

k0

)
(mod p),
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where for the equivalence we used that both
(
n
k

)
and

(
n
pk′

)(
n0

k0

)
are integers. Now

we have to prove that
(

n
pk′

)
≡
(
n′

k′

)
. This coefficient can be factored as

(
n

pk′

)
=

k′−1∏
j=0

(
p∏

i=1

n+ 1− jp− i

jp+ i

)
=

k′−1∏
j=0

p∏
i=1

(n′ − j)p+ n0 + 1− i

jp+ i
.

Each of the k′ groups of factors has exactly one factor whose numerator is a
multiple of p (when i = s := (n0 + 1) mod p), and one whose denominator is.
Canceling the p in them and taking congruences on the other factors, we get

(
n

pk′

)
≡

k′−1∏
j=0

n′ − j

j + 1

∏
1≤i≤p
i̸=s

(n0 + 1− i)

(p− 1)!

 =

k′−1∏
j=0

(
n′ − j

j + 1

(p− 1)!

(p− 1)!

)
=

=

k′∏
j=1

n′ + 1 + j

j
=

(
n′

k′

)
(mod p).

6. From part 5 by induction on r.

x 11. [M20 ] (E. Kummer, 1852.) Let p be prime. Show that if pn divides(
a+ b

a

)
but pn+1 does not, then n is equal to the number of carries that occur when a is added
to b in the p-ary number system.

Because of the way the exercise is written, we may assume that both a and b are natural
numbers (non-negative integers), and therefore

(
a+b
a

)
= (a+b)!

a!b! . Let sa be the sum of
the digits of a in base p and let µa = a−sa

p−1 be the number of times p appears in the
prime factorization of a, by Exercise 1.2.5–12. Define sb, µb, sc, and µc in a similar
manner, with c := a+ b. Then the number of times p appears in the prime factorization
of
(
a+b
a

)
is precisely

µc − µa − µb =
�����
c− a− b− sc + sa + sb

p− 1
,

but sc is precisely the sum of sa plus sb except that, every time we do a carry in the
sum in base p, we have to subtract p and add 1, that is, we subtract p−1, so sa+sb−sc
is precisely p− 1 times the number of carries and this proves the result.

x 17. [M18 ] Prove the Chu-Vandermonde formula (21) from Eq. (15), using that
(1 + x)r+s = (1 + x)r(1 + x)s.
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If n is negative, either k or n− k is negative for any k so both sides of the equation are
0. Otherwise, for x ∈ (−1, 1),

∑
n

(
r + s

n

)
xn = (1 + x)r+s = (1 + x)r(1 + x)s =

∑
k

(
r

k

)
xk
∑
m

(
s

m

)
xm =

=
∑
k

(
r

k

)
xk
∑
n

(
s

n− k

)
xn−k =

∑
n

(∑
k

(
r

k

)(
s

n− k

))
xn.

If r and s are integers, the sums are finite and therefore we have polynomials in x in
both side, but since they are both equal in a nonempty open interval, the coefficients
are all equal and we have proved the result. If r and s are not integers, since(

r + s

n

)
−
∑
k

(
r

k

)(
s

n− k

)
= 0

for all r, s ∈ Z, and the left hand side is a polynomial on r and s, it follows that the
polynomial is 0 everywhere.

x 21. [05 ] Both sides of Eq. (25) are polynomials in s; why isn’t that equation an
identity in s?
We know the equation to be valid for n+1 values of s, namely 0, 1, . . . , n, but while the
polynomial on the left has degree n, the one on the right has degree m+ n+ 1 ≥ n+ 1,
so we cannot apply the reasoning below Eq. (8).

x 30. [M24 ] Show that there is a better way to solve Example 3 than the way used in
the text, by manipulating the sum so that Eq. (26) applies.
First, we note that the terms are nonzero when k ≥ 0 and m + 2k ≤ n + k, which
happens precisely when 0 ≤ k ≤ n−m, and in particular we may assume n ≥ m since
otherwise the sum is 0.

We start by negating the upper index (rule G) in the second factor and using
symmetry (rule B) on the first, and noting that all factors with negative k are 0:∑

k

(
n+ k

m+ 2k

)(
2k

k

)
(−1)k

k + 1
=
∑
k≥0

(
n+ k

n−m− k

)(
−k − 1

k

)
1

k + 1
.

We have the left hand side of Eq. (26) with t 7→ 1, r 7→ −1, n 7→ n−m, and s 7→ 2n−m,
so this is equal to(

−1 + 2n−m− n+m

n−m

)
=

(
n− 1

n−m

)
=

(
n− 1

m− 1

)
.

x 31. [M20 ] Evaluate ∑
k

(
m− r + s

k

)(
n+ r − s

n− k

)(
r + k

m+ n

)
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in terms of r, s, m, and n, given that m and n are integers. Begin by replacing(
r + k

m+ n

)
by

∑
j

(
r

m+ n− j

)(
k

j

)
.

We start assuming that r and s are also integers. The replacement suggested is given
directly by Equation 21, and we get

S :=
∑
k

(
m− r + s

k

)(
n+ r − s

n− k

)(
r + k

m+ n

)
=
∑
k

∑
j

(
m− r + s

k

)(
n+ r − s

n− k

)(
r

m+ n− j

)(
k

j

)
Eq. (21)

=
∑
j

(
r

m+ n− j

)(
m− r + s

j

)∑
k

(
n+ r − s

n− k

)(
m− r + s− j

k − j

)
Eq. (20)

=
∑
j

(
r

m+ n− j

)(
m− r + s

j

)∑
k

(
n+ r − s

k + r − s

)(
m− r + s− j

k − j

)
Eq. (6)*

=
∑
j

(
r

m+ n− j

)(
m− r + s

j

)(
m+ n− j

n− j

)
Eq. (22)*

=
∑
j

(
r

m+ n− j

)(
m− r + s

j

)(
m+ n− j

m

)
Eq. (6)**

=

(
r

m

)∑
j

(
m− r + s

j

)(
r −m

n− j

)
Eq. (20)

=

(
r

m

)(
s

n

)
.

In (**), we use that, for nonzero addends, m+ n− j ≥ 0 and therefore we can apply
Equation 6. In (*), we assume s ≤ m− r. This is not important, since, by the reasoning
about polynomials, this has been proved for infinite values of r and infinite values of s
and therefore applies to all r and s.

36. [M10 ] What is the sum
∑

k

(
n
k

)
of the numbers in each row of Pascal’s triangle?

What is the sum of these numbers with alternating signs,
∑

k

(
n
k

)
(−1)k?

If n ≥ 0, ∑
k

(
n

k

)
=
∑
k

(
n

k

)
1k1n−k = (1 + 1)n = 2n,

∑
k

(
n

k

)
(−1)k =

∑
k

(
n

k

)
(−1)k1n−k = (1− 1)n = 0n = δn0.

If n < 0 the value is generally undefined, as evidenced by Exercise 6.
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37. [M10 ] From the answers to the preceding exercise, deduce the value of the sum
of every other entry in a row,

(
n
0

)
+
(
n
2

)
+
(
n
4

)
+ . . . .∑

k

(
n

2k

)
=
∑
k

(
n

k

)
[k even] =

∑
k

(
n

k

)
1 + (−1)k

2
=

2n + δn0
2

=

{
1, n = 0;

2n−1, n > 0.

39. [M10 ] What is the sum
∑

k

[
n
k

]
of the numbers in each row of Stirling’s first

triangle? What is the sum of these numbers with alternating signs?
We can use Equation 44:

∑
k

[
n

k

]
= (−1)−n

∑
k

(−1)n−k

[
n

k

]
(−1)k = (−1)n(−1)n =

= (−1)n(−1)(−2) · · · (−n) = n!,∑
k

[
n

k

]
(−1)k =

∑
k

[
n

k

]
(−1)−k = (−1)−n

∑
k

(−1)n−k

[
n

k

]
1k = (−1)n1n = δn0 − δn1.

The first equation makes sense, as it is the number of permutations of n symbols
irrespective of the number k of cycles.

42. [HM10 ] Express the binomial coefficient
(
r
k

)
in terms of the beta function defined

above. (This gives us a way to extend the definition to all real values of k.)
For integers r ≥ 0 and k ̸= 0,(

r

k

)
=

r!

k!(r − k)!
=

Γ(r + 1)

Γ(k + 1)Γ(r − k)
=

Γ(r + 1)

kΓ(k)Γ(r − k + 1)
= (kB(k, r − k + 1))−1.

We can extend this function to the points where it is not defined by taking limits.
We are not required to evaluate the domain of this function, but we have to see that

it matches our definition for r ∈ R and k ∈ Z. For k ∈ N, we first see that

lim
(x,y)→(r,k)

Γ(x− y + 1)

Γ(x− k + 1)
= lim

(x,y)→(r,k)

limm
mx−ym!

(x−y+1)···(x−y+m)

limm
mx−km!

(x−k+1)···(x−k+m)

=

= lim
(x,y)→(r,k)

lim
m

mk−y
m∏
i=1

x+m− y

x+m− k
= 1,

where I don’t remember enough of my calculus lessons to know why the last step is
correct but it has to do with exchanging limits. With this, if we successively apply the
fact that Γ(x+ 1) = xΓ(x),

lim
(x,y)→(r,k)

Γ(x+ 1)

yΓ(y)Γ(x− y + 1)
= lim

(x,y)→(r,k)

x(x− 1) · · · (x− k + 1)

yΓ(y)Γ(x−y+1)
Γ(x−k+1)

=

=
r(r − 1) · · · (r − k + 1)

k!
.
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If k ∈ Z−, for r /∈ Z−, Γ(r + 1) is bounded in an open set around (r, k), and since Γ is
continuous and has no zeros, the denominator tends to infinity, so the corresponding
limit correctly evaluates to 0. If k, r ∈ Z− I can’t find if the value is defined, but if it is
then its value is 0.

44. [HM20 ] Using the generalized binomial coefficient suggested in exercise 42, show
that (

r

1/2

)
= 22r+1

/(
2r

r

)
π.

From the definition, (
r
1
2

)
=

1
1
2B( 12 , r +

1
2 )

=
2Γ(r + 1)

Γ( 12 )Γ(r +
1
2 )

.

Now, we know
√
π
2 = ( 12 )! =

1
2Γ(

1
2 ), so Γ( 12 ) =

√
π and(

r
1
2

)
=

2r!
√
π(r − 1

2 )(r −
3
2 ) · · · (

1
2 )
√
π

=
2r!2r

π(2r − 1)(2r − 3) · · · 1
.

We see that (2r)! = ((2r)(2r − 2) · · · 2)((2r − 1)(2r − 3) · · · 1). We already have the
second factor, and the first one is precisely 2rr!, so we multiply both numerator and
denominator by this factor to get that(

r
1
2

)
=

2r!2r2rr!

π(2r)!
=

22r+1(
2r
r

)
π
.

x 46. [M21 ] Using Stirling’s approximation, Eq. 1.2.5–(7), find an approximate value
of
(
x+y
y

)
, assuming that both x and y are large. In particular, find the approximate

size of
(
2n
n

)
when n is large.

For large x and y,

(
x+ y

y

)
=

(x+ y)!

x!y!
≈
√
2π(x+ y)

(
x+y

e

)x+y

√
2πx
√
2πy

(
x
e

)x (y
e

)y =

√
x+ y

2πxy

(
(x+ y)x+y

xxyy

)
=

=
(x+ y)x+y+1/2

√
2πxx+1/2yy+1/2

=

√
1

2π

(
1

x
+

1

y

)(
1 +

y

x

)x(
1 +

x

y

)y

.

Then, for large n, (
2n

n

)
=

(2n)2n+1/2

√
2πn2n+1

=
22n
√
2n2n

√
n√

2πn2nn
=

4n√
πn

.

x 48. [M25 ] Show that∑
k≥0

(
n

k

)
(−1)k

k + x
=

n!

x(x+ 1) · · · (x+ n)
=

1

x
(
n+x
n

) ,
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if the denominators are not zero.

The second equality is obvious. For the first one, since the way the formula is written
assumes n ∈ N, we can prove this by induction. For n = 0,

∑
k≥0

(
0

k

)
(−1)k

k + x
=

1

x
=

0!

x
.

For n > 0,

∑
k≥0

(
n

k

)
(−1)k

k + x
=
∑
k≥0

(
n− 1

k

)
(−1)k

k + x
+
∑
k≥0

(
n− 1

k − 1

)
(−1)k

k + x
=

=
∑
k≥0

(
n− 1

k

)
(−1)k

k + x
+
∑
k≥0

(
n− 1

k

)
(−1)k+1

k + 1 + x
=

1

x
(
n−1+x
n−1

) − 1

(x+ 1)
(
n+x
n−1

) =

=
(n− 1)!

x(x+ 1) · · · (x+ n− 1)
− (n− 1)!

(x+ 1)(x+ 2) · · · (x+ n)
=

(n− 1)!((��x+n)��−x)
x(x+ 1) · · · (x+ n)

.

x 57. [M22 ] Show that the coefficient am in Stirling’s attempt at generalizing the
factorial function, Eq. 1.2.5–(12), is

(−1)m

m!

∑
k≥1

(−1)k
(
m− 1

k − 1

)
ln k.

Also find q-nomial generalizations of the fundamental identities (17) and (21).

The sum in Stirling’s attempt is

Sn =
∑
k≥0

ak+1

k∏
j=0

(n− j) =
∑
m≥1

am

m−1∏
j=0

(n− j)

=
∑
m≥1

(−1)m

m!

∑
k≥1

(−1)k
(
m− 1

k − 1

)
ln k

m−1∏
j=0

(n− j)

=
∑
k≥1

∑
m≥1

(−1)m+k

(
n

m

)(
m− 1

k − 1

) ln k.

There are several things happening in the last line. First, note that both sums are
bounded, for m must be at most n because otherwise the product would contain a
factor n − n = 0, and k must be lower than m, and therefore lower than n, because
otherwise the factor

(
m−1
k−1

)
would be 0. This allows us to swap the sums and extract a

factor that only depends on k. Moreover,∏m−1
j=0 (n− j)

m!
=

∏m
j=1(n− j + 1)∏m

j=1 j
=

(
n

m

)
.
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Let Ak be the value of the inner sum for a given k, we know that Ak = 0 for k > n,
and if we prove that Ak = 1 for k ≤ n, we would have

Sn =

n∑
k=1

ln k = ln

n∏
k=1

k = lnn!

Now, we have

Ak =
∑
m≥1

(−1)m+k

(
n

m

)(
m− 1

k − 1

)

=
∑
m

(−1)m+k

(
n

m

)(
m− 1

k − 1

)
− (−1)k

(
−1
k − 1

)
(∗)

=
∑
m

(−1)n−m−k

(
n

n−m

)(
n−m− 1

k − 1

)
+ 1 (∗∗)

= −
∑
m

(−1)n−m

(
n

m

)(
k − 1− n+m

k − 1

)
+ 1 Rules B, G

= −
(
k − 1− n

k − 1− n

)
+ 1 = 1, Eq. (23)

where in (∗) we expand the domain of m to all integers and subtract the case when
m = 0 to compensate for that (this is the only nonzero term that wasn’t considered
already) and in (∗∗) we change m to n−m.

For the second part of the exercise, we start by writing the identities (17) and (21)
in q-nomial notation. For (17), this would be(

r

k, r − k

)
= (−1)k

(
k − r − 1

k,−r − 1

)
, or

(
a+ b

a, b

)
= (−1)a

(
−b− 1

a,−(a+ b)− 1

)
.

That is, this allows us to change the sum on top to something resembling just one of
the numbers that were on the bottom part. To generalize this,(
k1 + · · ·+ km
k1, . . . , km

)
=

(
k1 + k2

k1

)
· · ·
(

k1 + · · ·+ km
k1 + · · ·+ km−1

)
= (−1)k1+···+km−1

(
k1 + k2

k1

)
· · ·
(
k1 + · · ·+ km−1

k1 + · · ·+ km−2

)(
−km − 1

k1 + · · ·+ km−1

)
= (−1)k1+···+km−1

(
−km − 1

k1, . . . , km−1,−(k1 + · · ·+ km)− 1

)
.

We are abusing notation here, since the book only defines multinomial coefficients for
ki ≥ 0, but we can define them for any ki ∈ Z by using the property that relates them
to binomial coefficients, at the cost of symmetry with respect to the order of the ki.

For (21), this would be∑
k

(
r

k, r − k

)(
s

n− k, s− n+ k

)
=

(
r + s

n, r + s− n

)
.
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That is, in this case we would add up all the numbers on each component. This
clearly holds if we place k, r − k and n − k, s − n + k as the two last components of
the multinomial coefficient. There must be a better (less silly) generalization but I’ve
already spent way too much time in this exercise.

x 60. [M23 ] We have seen that
(
n
k

)
is the number of combinations of n things, k at a

time, namely the number of ways to choose k different things out of a set of n. The
combinations with repetitions are similar to ordinary combinations, except that we
may choose each object any number of times. Thus, the list (1) would be extended to
include also aaa, aab, aac, aad, aae, abb, etc., if we were considering combinations with
repetition. How many k-combinations of n objects are there, if repetition is allowed?
We can draw a bijection between k-combinations of {1, . . . , n} with repetition and
k-combinations of {1, . . . , n+ k − 1} without repetition by the following assignment:

1 ≤ a1 ≤ a2 ≤ · · · ≤ ak ≤ n 7→ 1 ≤ a1 < a2 + 1 < · · · < ak + k − 1 ≤ n+ k − 1

1 ≤ b1 ≤ b2 − 1 ≤ · · · ≤ bk − k + 1 ≤ n ←[ 1 ≤ b1 < b2 < · · · < bk ≤ n+ k − 1

Thus the answer is (
n+ k − 1

k

)
= (−1)k

(
−n
k

)
=

nk

k!
.

x 62. [M23 ] The text gives formulas for sums involving a product of two binomial
coefficients. Of the sums involving a product of three binomial coefficients, the following
one and the identity of exercise 31 seem to be the most useful:∑

k

(−1)k
(
l +m

l + k

)(
m+ n

m+ k

)(
n+ l

n+ k

)
=

(l +m+ n)!

l!m!n!
, integer l,m, n ≥ 0.

(The sum includes both positive and negative values of k.) Prove this identity.
(Looking at the solution.)We may assume that l ≤ m,n, since we can always rename
coefficients to make it this way. Then the application of the identity in exercise 31 is
actually from right to left: we add a new variable j, change the last factor

(
n+l
n+k

)
to(

n+k
l−k

)
by symmetry, and apply the aforementioned exercise to the last two factors to

get that

S :=
∑
k

(−1)k
(
l +m

l + k

)(
m+ n

m+ k

)(
n+ l

n+ k

)
=
∑
j,k

(−1)k
(
l +m

k + l

)(
k + l

j

)(
m− k

l − k − j

)(
m+ n+ j

m+ l

)
.

Using that in general
(
n
k

)
= 0 for n ≥ 0 and k /∈ {0, . . . , n}, nonzero addends here must

follow

−l ≤ k ≤ m, −m ≤ k ≤ n, −n ≤ k ≤ l, 0 ≤ j ≤ l + k, l −m ≤ j ≤ l − k;

that is, |k| ≤ min{m,n, l} and max{l −m, 0} ≤ j ≤ l − |k|, which simplifies to |k| ≤ l
and 0 ≤ j ≤ l−|k| using the conditions at the beginning and then to only 0 ≤ j ≤ l−|k|.
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This means that, in all the binomial coefficients in the right hand side of the above
equation, the upper and lower parts are non-negative, so we can substitute them to
fractions of coefficients and, after canceling out, we get

S =
∑

0≤j≤l−|k|

(−1)k (m+ n+ j)!

j!(l + k − j)!(l − k − j)!(m− l + j)!(n− l + j)!

=
∑

0≤j≤l

∑
|k|≤l−j

(−1)k
(

2l − 2j

l + k − j

)
(m+ n+ j)!

(2l − 2j)!j!(m− l + j)!(n− l + j)!
,

but then the sum of (−1)k
(
2l−2j
l+k−j

)
across all k is 0 unless j = l, so we just take the term

with j = l and k = 0 to get

S = (−1)0
(

2l − 2l

l + 0− l

)
(m+ n+ l)!

(2l − 2l)!l!(m− l + l)!(n− l + l)!
=

(l +m+ n)!

l!m!n!
.

x 64. [M20 ] Show that
{
n
m

}
is the number of ways to partition a set of n elements

into m nonempty disjoint subsets. For example, the set {1, 2, 3, 4} can be partitioned
into two subsets in

{
4
2

}
= 7 ways: {1, 2, 3}{4}; {1, 2, 4}{3}; {1, 3, 4}{2}; {2, 3, 4}{1};

{1, 2}{3, 4}; {1, 3}{2, 4}; {1, 4}{2, 3}.
Let n,m ∈ N, we prove this by induction in n and m. For n = 0, there is 1 =

{
0
0

}
way

to partition ∅ into 0 nonempty disjoint subsets and 0 =
{

0
m

}
ways to partition it into

m ≥ 1 nonempty subsets, which matches Equation 48. For m = 0 and n ≥ 1, there are
0 =

{
n
0

}
ways to divide a set of n elements into 0 nonempty subsets.

Now, for the induction step, if n ≥ 1 and m ≥ 1, a partition of a set like {1, . . . , n}
into nonempty subsets can be thought of as a partition of {1, . . . , n− 1} to which n has
been added either to one of the elements of a partition or in a separate singleton set. If
the partition of {1, . . . , n} has m nonempty subsets, for the first option we might add n
to any of the subsets of a partition of {1, . . . , n− 1} with m subsets, and for the second
one, we would need a partition of {1, . . . , n− 1} with m− 1 subsets. Thus we would
need {

n

m

}
= m

{
n− 1

m

}
+

{
n− 1

m− 1

}
,

but this is precisely Equation 46.

x 67. [M20 ] We often need to know that binomial coefficients aren’t too large. Prove
the easy-to-remember upper bound(

n

k

)
≤
(ne
k

)k
, when n ≥ k ≥ 0.

From Exercise 1.2.5–21, if k ≥ 1, then k! ≥ kk

ek−1 , so(
n

k

)
=

n(n− 1) · · · (n− k + 1)

k!
≤ n(n− 1) · · · (n− k + 1)

kk

ek−1

≤ nkek−1

kk
≤
(ne
k

)k
.

For k = 0,

lim
k→0

(ne
k

)k
= lim

k→∞

k
√
nek = 1 =

(
n

0

)
.
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1.2.7 Harmonic Numbers

1. [01 ] What are H0, H1, and H2?
H0 = 0, H1 = 1, H2 = 3

2 .

x 4. [10 ] Decide which of the following statements are true for all positive integers n:

1. Hn < lnn.

2. Hn > lnn.

3. Hn > lnn+ γ.

1. False, since H2 = 3
2 > 1 > ln 2.

2. True, because the next one is true.

3. True. If this wasn’t true for some number n, then it would be

0 ≥ Hn − (lnn+ γ) >
1

2n
− 1

12n2
+

1

12n4
− 1

252n6
,

but 1
2n > 1

12n2 and 1
12n4 > 1

252n6 for any n ≥ 1#.

x 9. [M18 ] Theorem A applies only when x > 0; what is the value of the sum considered
when x = −1?
Using Equation 1.2.6(18) in (∗) and Exercise 1.2.6–48 in (∗∗),

n∑
k=1

(
n

k

)
(−1)kHk =

∑
1≤j≤k≤n

(
n

k

)
(−1)k 1

j
=

n∑
j=1

1

j

n∑
k=j

(
n

k

)
(−1)k =

= (−1)n
n∑

j=1

1

j

n−j∑
k=0

(
n

k

)
(−1)k (∗)

= (−1)�n
n∑

j=1

1

j
(−1)�n−j

(
n− 1

n− j

)
=

=

n∑
j=0

1

j + 1
(−1)−j−1

(
n− 1

n− j − 1

)
= −

n−1∑
j=0

(−1)j

j + 1

(
n− 1

j

)
(∗∗)
=

1(
n

n−1

) = − 1

n
.

x 11. [M21 ] Using summation by parts, evaluate∑
1<k≤n

1

k(k − 1)
Hk.

We have

1

k(k − 1)
Hk =

(
1

k − 1
− 1

k

)
Hk =

1

k − 1

(
Hk−1 +

1

k

)
− 1

k
Hk,
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so

n∑
k=2

Hk

k(k − 1)
=

n∑
k=2

(
1

k − 1

(
Hk−1 +

1

k

)
− 1

k
Hk

)
= 1− 1

n
Hn +

n∑
k=2

1

k(k − 1)
=

= 1− Hn

n
+

n∑
k=2

(
1

k − 1
− 1

k

)
= 1− Hn

n
+Hn−1 −Hn + 1 =

= 1− 1

n
Hn���+Hn −

1

n
���−Hn + 1 = 2− 1

n
(1 +Hn).

x 12. [M10 ] Evaluate H
(1000)
∞ correct to at least 100 decimal places.

H(1000)
∞ =

∑
k≥1

1

k1000
= 1± 0.5 · 10−100,

since 21000 has way more than 100 digits.

x 15. [M23 ] Express
∑n

k=1 H
2
k in terms of n and Hn.

n∑
k=1

H2
k =

∑
1≤j≤k≤n

1

j
Hk =

n∑
j=1

1

j

n∑
k=j

Hk =

n∑
j=1

1

j

(
n∑

k=1

Hk −
j−1∑
k=1

Hk

)

=

n∑
j=1

1

j
((n+ 1)Hn − n− jHj−1 + j − 1)

=

n∑
j=1

(
1

j
((n+ 1)Hn − n− 1)−Hj−1 + 1

)
= ((n+ 1)Hn − n− 1)Hn − (nHn−1 − n+ 1) + n

= (n+ 1)H2
n − (n+ 1)Hn − nHn + n+ n

= (n+ 1)H2
n − (2n+ 1)Hn + 2n.

x 23. [HM20 ] By considering the function Γ′(x)/Γ(x), generalize Hn to noninteger
values of n. You may use the fact that Γ′(1) = −γ, anticipating the next exercise.
We have

Γ′(x) = lim
m

 lnm ·mxm!

x(x+ 1) · · · (x+m)
−

mxm!
∑m

k=0
x(x+1)···(x+m)

(x+k)

(x(x+ 1) · · · (x+m))2

 =

= Γ(x) lim
m

(
lnm−

m∑
k=0

1

x+ k

)
= Γ(x)(lnm−Hk+m +Hk−1).

The fact given in the exercise tells us that

−γ = Γ′(1) = Γ(1) lim
m

(lnm−Hm+1),
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so for n ∈ Z>0,

Γ′(n)

Γ(n)
= lim

m
(lnm−Hn+m +Hn−1) = Hn−1 − γ,

and we can define

Hx :=
Γ′(x+ 1)

Γ(x+ 1)
+ γ

for any x ∈ C where this expression is defined or can be extended by continuity.

1.2.8 Fibonacci Numbers

1. [10 ] What is the answer to Leonardo Fibonacci’s original problem: How many
pairs of rabbits are present after a year?
After one month there are F3 = 2 pairs of rabbits, after two months there are F4 = 3,
etc., therefore after a year there are F14 = 377 pairs of rabbits.

x 2. [20 ] In view of Eq. (15), what is the approximate value of F1000? (Use logarithms
found in Appendix A.)

F1000 ≈
ϕ1000

√
5

=
10log ϕ1000

√
5

=
101000(lnϕ/ ln 10)

√
5

∼=
101000·0.48121...·0.43429...

2.23606...
∼=

10208.9876..

2.23606...

∼=
100.9876

2.23606
· 10208 ∼= 4.3 · 10208.

x 4. [14 ] Find all n for which Fn = n.
F0 = 0, F1 = 1. Then F2 = 1, F3 = 2, F4 = 3, F5 = 5, and from here Fn grows strictly
faster than n so there are no more such numbers. Thus only 0, 1, and 5 meet this
condition.

x 7. [15 ] If n is not a prime number, Fn is not a prime number (with one exception).
Prove this and find the exception.
The exception is F4 = 3. For the general rule, let r, s ∈ Z with r ≥ 3 and s ≥ 2, by Eq.
(6),

Frs = Fr+r(s−1) = Fr(s−1)Fr+1 + Fr(s−1)−1Fr = Fr(Fr(s−1) + Fr(s−1)−1) + Fr−1Fr(s−1)

= Fr

(
Fr(s−1)+1 + Fr−1

Fr(s−1)

Fr

)
,

where the fraction in the last part is an integer. If r > 2, then Fr > 1 and, since
Fr(s−1)+1 > 1, we have a decomposition of Frs as a compound number. Every compound
number other than 4 can be expressed as a product of integers rs with r ≥ 3 and s ≥ 2.
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x 13. [M22 ] Express the following sequences in terms of the Fibonacci numbers, when
r, s, and c are given constants:

1. a0 = r, a1 = s; an+2 = an+1 + an, for n ≥ 0.

2. b0 = 0, b1 = 1; bn+2 = bn+1 + bn + c, for n ≥ 0.

1. We have(
an+1

an

)
=

(
1 1
1 0

)(
an

an−1

)
= · · · =

(
1 1
1 0

)n(
s
r

)
=

(
Fn+1s+ Fnr
Fns+ Fn−1r

)
,

so in general an = Fn−1r + Fns, using the convention that F−1 = 1.

2. We have bn+1

bn
1

 =

1 1 c
1 0 0
0 0 1

 bn
bn−1

1

 = · · · =

1 1 c
1 0 0
0 0 1

n1
0
1

 .

By playing a bit with this matrix, we come to the conclusion that1 1 c
1

1

n

=

Fn+1 Fn (Fn+2 − 1)c
Fn Fn−1 (Fn+1 − 1)c

1


and therefore

bn = Fn + (Fn+1 − 1)c.

For n = 0 and n = 1, this is easy to check. For n ≥ 2,

bn = bn−1+bn−2+c = Fn−1+(Fn−1)c+Fn−2+(Fn−1−1)c+c = Fn+(Fn+1−1)c.

x 16. [M20 ] Fibonacci numbers appear implicitly in Pascal’s triangle if it is viewed
from the right angle. Show that the following sum of binomial coefficients is a Fibonacci
number:

n∑
k=0

(
n− k

k

)
.

We prove by induction that this sum is precisely Fn+1. For n = 0 and n = 1, this is a
simple check. For n > 1,

n∑
k=0

(
n− k

k

)
=

n∑
k=0

(
n− k − 1

k

)
+

n∑
k=0

(
n− k − 1

k − 1

)

=

n∑
k=0

(
n− k − 1

k

)
+

n−1∑
k=−1

(
n− k − 2

k

)

=

n−1∑
k=0

(
(n− 1)− k

k

)
+

n−2∑
k=0

(
(n− 2)− k

k

)
= Fn + Fn−1 = Fn+1.
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x 22. [M20 ] Show that
∑

k

(
n
k

)
Fm+k is a Fibonacci number.

We prove by induction on n that this sum is Fm+2n. For n = 0 and n = 1, this is a
simple check. For n > 1,∑

k

(
n

k

)
Fm+k =

∑
k

(
n− 1

k

)
Fm+k +

∑
k

(
n− 1

k − 1

)
Fm+k

= Fm+2(n−1) +
∑
k

(
n− 1

k

)
Fm+1+k

= Fm+2(n−1) + Fm+1+2(n−1) = Fm+2+2(n−1) = Fm+2n.

x 26. [M20 ] Using the previous exercise, show that Fp = 5(p−1)/2 (mod p) if p is an
odd prime.
The previous exercise tells us that

2nFn = 2
∑
k odd

(
n

k

)
5(k−1)/2.

Now, if n = p is prime,
(
p
k

)
= p(p−1)···(p−k+1)

1···k is a multiple of p for k ∈ {1, . . . , p− 1},
and k = 0 is not odd, so

2p−1Fp =
∑
k odd

(
p

k

)
5(k−1)/2 ≡

(
p

p

)
5(p−1)/2 = 5(p−1)/2 (mod p),

but by Fermat’s theorem, 2p−1 ≡ 1 (mod p), so this simplifies to the desired result.

x 29. [M23 ] (Fibonomial coefficients.) Édouard Lucas defined the quantities(
n

k

)
F
=

FnFn−1 · · ·Fn−k+1

FkFk−1 · · ·F1
=

k∏
j=1

(
Fn−k+j

Fj

)
in a manner analogous to binomial coefficients.

1. Make a table of
(
n
k

)
F for 0 ≤ k ≤ n ≤ 6.

2. Show that
(
n
k

)
F is always an integer because we have(

n

k

)
F
= Fk−1

(
n− 1

k

)
F
+ Fn−k+1

(
n− 1

k − 1

)
F
.

1.

n
(
n
0

) (
n
1

) (
n
2

) (
n
3

) (
n
4

) (
n
5

) (
n
6

)
0 1
1 1 1
2 1 1 1
3 1 2 2 1
4 1 3 6 3 1
5 1 5 15 15 5 1
6 1 8 40 60 40 8 1
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2. We have

Fk−1

(
n− 1

k

)
F
+ Fn−k+1

(
n− 1

k − 1

)
F
=

= Fk−1

k∏
j=1

Fn−k+j−1

Fj
+ Fn−k+1

k−1∏
j=1

Fn−k+j

Fj
=

=
1

Fk

k−1∏
j=1

Fn−k+j

Fj

 (Fk−1Fn−k + Fn−k+1Fk),

where the last identity is better read backwards, and by Eq. (6),

Fn = F(n−k)+k = FkFn−k+1 + Fk−1Fn−k,

so the above simplifies precisely to
(
n
k

)
F .

x 34. [M24 ] (The Fibonacci number system.) Let the notation k ≫ m mean that
k ≥ m + 2. Show that every positive integer n has a unique representation n =
Fk1 + Fk2 + · · ·+ Fkr , where k1 ≫ k2 ≫ · · · ≫ kr ≫ 0.
If n ≤ 3, this is easy to check. Otherwise, let k be the greatest number such that n ≥ Fk.
If n = Fk, we’re done. Otherwise n > 3 and k ≥ 4, and n − Fk < Fk−1 (otherwise
Fk+1 ≤ n#), and it can be expressed this way by induction.

To see that this representation is unique, let n = Fk1
+ · · ·+ Fkr

= Fj1 + · · ·+ Fjs .
If n ≤ 3, this is easy to check. Otherwise, if Fk1

= Fj1 we use induction; otherwise
assume Fk1

> Fj1 ≥ 2, and we want to prove that

Fj2 + · · ·+ Fjs ≤ Fj1−2 + · · ·+ F⌊j1 mod 2⌋+2 ≤ Fj1−1 ≤ Fk1
− Fj1 .

The first inequality comes from the highest value that Fj2 + · · ·+ Fjs could possibly
have, and the last one from the highest value that Fj1 + Fj1−1 could. For the middle
one we use induction. For j1 ∈ {2, 3}, the left hand side is 0. Otherwise

Fj1−2 + Fj1−4 + · · ·+ F⌊j1 mod 2⌋+2 ≤ Fj1−2 + Fj1−3 = Fj1−1.

x 41. [M25 ] (Yuri Matiyasevich, 1990.) Let f(x) = ⌊x + ϕ−1⌋. Prove that if n =
Fk1

+ · · ·+ Fkr
is the representation of n in the Fibonacci number system of exercise

34, then Fk1+1 + · · ·+ Fkr+1 = f(ϕn). Find a similar formula for Fk1−1 + · · ·+ Fkr−1.

Using that each Fki =
1√
5
(ϕki + ϕ̂ki), let m := Fk1+1 + · · ·+ Fkr+1, since m ∈ Z,

f(ϕn)−m =

⌊
1√
5

(∑
i

ϕki+1 +
∑
i

ϕ̂ki−1

)
− ϕ̂

⌋
− 1√

5

(∑
i

ϕki+1 −
∑
i

ϕ̂ki+1

)

=

⌊
1√
5

∑
i

(ϕ̂ki−1 + ϕ̂ki+1)− ϕ̂

⌋
=

⌊
1 + ϕ̂2

√
5

∑
i

ϕ̂ki−1 − ϕ̂

⌋
.
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Here, when ki is even, ϕ̂ki−1 is negative, and when it’s odd, ϕ̂ki−1 is positive, so
the value of this sum is strictly lower than

∑
k≥1 ϕ̂

2k = ϕ̂2

1−ϕ̂2
, and strictly greater

than
∑

k≥1 ϕ̂
2k−1 = ϕ̂

1−ϕ̂2
. Now, ϕ̂2 = 1

4 (1 −
√
5)2 = 1

4 (6 − 2
√
5) = 1

2 (3 −
√
5), so

1− ϕ̂2 = 1
2 (2− 3 +

√
5) = − 1

2 (1−
√
5) = −ϕ̂ and therefore the lower bound of what is

inside the brackets above is

1 + ϕ̂2

√
5

ϕ̂

1− ϕ̂2
− ϕ̂ = −1 + ϕ̂2

√
5
− ϕ̂ = −5−

√
5

2
√
5
− 1−

√
5

2
= −5−

√
5 +
√
5− 5

2
√
5

= 0,

and the upper bound is

−ϕ̂1 + ϕ̂2

√
5
− ϕ̂ = −ϕ̂

(
5−
√
5

2
√
5

+ 1

)
= −ϕ̂

(
5 +
√
5

2
√
5

)
= −ϕ̂ϕ = 1,

and since these bounds are never reached, the property has been proven. A similar
argument can be made to prove that Fk1−1 + · · ·+ Fkr−1 = f(n/ϕ).

1.2.9 Generating Functions

x 2. [M13 ] Prove Eq. (11).∑
n≥0

an
n!

zn

∑
m≥0

bm
m!

zm

 =
∑
n≥0

(∑
k

akbn−k

k!(n− k)!

)
zn =

∑
n≥0

1

n!

(∑
k

(
n

k

)
akbn−k

)
zn.

4. [M01 ] Explain why Eq. (19) is a special case of Eq. (21).
Just set t = 0, then x = 1 + z.

x 6. [HM15 ] Find the generating function for〈 ∑
0<k<n

1

k(n− k)

〉
;

differentiate it and express the coefficients in terms of harmonic numbers.
The generating function is

G(z) :=
∑
n≥0

∑
0<k<n

1

k(n− k)
zn =

∑
n,m≥1

zn+m

nm
=

∑
n≥1

zn

n

∑
m≥1

zm

m

 =

∑
n≥1

zn

n

2

=

−∑
n≥1

(−1)n+1

n
(−z)n

2

= (− ln(1 + (−z)))2 = ln(1− z)2,

by Eq. (24). Its derivative is

Ġ(z) = − 2

1− z
ln(1− z) =

2

1− z
ln

(
1

1− z

)
,

so by Eq. (25) with m = 0 the coefficients are [zn]Ġ(z) = 2(Hn −H0)
(
n
n

)
= 2Hn.
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x 10. [M25 ] An elementary symmetric function is defined by the formula

em =
∑

1≤j1<···<jm≤n

xj1 · · ·xjm .

(This is the same as hm of Eq. (33), except that equal subscripts are not allowed.) Find
the generating function for em, and express em in terms of the Sj in Eq. (34). Write
out the formulas for e1, e2, e3, and e4.

Here m ≤ n or otherwise we have no elements, so

G(z) :=
∑
m≥0

emzm =

n∑
m=0

∑
1≤j1<···<jk≤n

xj1 · · ·xjmzn =
∑

a1,...,an∈{0,1}

n∏
i=1

(xiz)
ai

=

n∏
i=1

∑
a∈{0,1}

(xiz)
a =

n∏
i=1

(xiz + 1),

as we can regard the sum as taking the product of each subset of {xiz}i. From here,

lnG(z) =

n∑
i=1

ln(1 + xiz) =

n∑
i=1

∑
k≥1

(−1)k+1

k
xk
i z

k =
∑
k≥1

(−1)k+1

k
Skz

k,

so

G(z) = elnG(z) = exp

∑
k≥1

(−1)k+1

k
Skz

k

 =
∏
k≥1

e(−1)k+1Skz
k/k

=
∏
k≥1

∑
j≥0

1

j!

(
(−1)k+1Sk

k

)j

zjk =
∑
m≥0

 ∑
j1,...,jm≥0

j1+2j2+···+mjm=m

m∏
k=1

1

jk!

(
(−1)k+1Sk

k

)jk

 zm.

This gives us an explicit formulation for em. Note that

m∏
k=1

(−1)(k+1)jk = (−1)
∑m

k=1 kjk+
∑m

k=1 jk = (−1)m+
∑

k jk ,

so

em =
∑

j1,...,jm≥0
j1+2j2+···+mjm=m

(−1)m+j1+···+jm

m∏
k=1

Sjk
k

kjkjk!
.

For example, if we call pkjk to each of the factors of the product in this latest
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formula, using that each pk0 = 1 and can therefore be ignored,

e1 = p11 = S1,

e2 = p12 + p21 =
S2
1

2
− S2

2
=

1

2
(S2

1 − S2),

e3 = p13 − p11p21 + p31 =
S3
1

6
− S1

S2

2
+

S3

3
=

1

6
(S3

1 + 2S3 − 3S1S2),

e4 = p14 − p12p21 + p11p31 + p22 − p41 =
S4
1

24
− S2

1

2

S2

2
+ S1

S3

3
+

S2
2

8
− S4

4

=
1

24
(S4

1 − 6S2
1S2 + 8S1S3 + 3S2

2 − 6S4).

x 11. [M25 ] Equation (39) can also be used to express the S’s in terms of the h’s: We
find S1 = h1, S2 = 2h2 − h2

1, S3 = 3h3 − 3h1h2 + h3
1, etc. What is the coefficient of

hk1
1 hk2

2 · · ·hkm
m in this representation of Sm, when k1 + 2k2 + · · ·+mkm = m?

(I had to look up the solution.) We ignore Eq. (39) and focus on Eqs. (37) and (24).
There,

∑
k≥1

Skz
k

k!
= lnG(z) = ln

1 +
∑
j≥1

hjz
j

 =
∑
k≥1

(−1)k+1

k

∑
j≥1

hjz
j

k

=
∑
k≥1

(−1)k+1

k

∑
j1,...,jk≥1

hj1 · · ·hjkz
j1+···+jk

=
∑
m≥1

∑
i1,...,im≥0

i1+2i2+···+mim=m

(−1)i1+···+im+1

i1 + · · ·+ im

(
i1 + · · ·+ im
i1, . . . , im

)
hi1
1 · · ·him

m zm,

so the coefficient is
(−1)k1+···+km+1(k1 + · · ·+ km)!

k1! · · · km!
.

For the last identity, we have regrouped all the terms by the value of m := j1 + · · ·+ jk
and then by {ij := |{t | jt = j}|}mj=1, that is, the number of times that each hj appears
rather than the indexes of those that do. When doing this, we note that k = i1+ · · ·+im
and that hj1 · · ·hjk = hi1

1 · · ·him
m , so all the addends in a given group are the same, and

the number of addends is the number of orderings of the k indexes without considering
the order of indexes that are equal, of which there are i1 indexes equal to 1, i2 equal to
2, etc., and this is a multinomial coefficient.

x 12. [M20 ] Suppose we have a doubly subscripted sequence ⟨amn⟩ for m,n = 0, 1, . . . ;
show how this double sequence can be represented by a single generating function of
two variables, and determine the generating function for ⟨

(
n
m

)
⟩.

A generating function in this case could be something like

G(y, z) :=
∑

m,n≥0

amny
mzn =

∑
n≥0

∑
m≥0

amny
m

 zn =
∑
m≥0

∑
n≥0

amnz
n

 ym.
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In our case, by the binomial theorem,

(1 + y)n =
∑
m≥0

(
n

m

)
ym,

so
G(y, z) =

∑
n≥0

(1 + y)nzn =
1

1− (1 + y)z
.

x 18. [M25 ] Given positive integers n and r, find a simple formula for the value of the
following sums:

1.
∑

1≤k1<k2<···<kr≤n k1k2 · · · kr;

2.
∑

1≤k1≤k2≤···≤kr≤n k1k2 · · · kr.

(For example, when n = 3 and r = 2 the sums are, respectively, 1 · 2 + 1 · 3 + 2 · 3 and
1 · 1 + 1 · 2 + 1 · 3 + 2 · 2 + 2 · 3 + 3 · 3.)

1. Following Exercise 10 and then applying Equation (27),

G(z) :=
∑
r≥0

∑
1≤k1<···<kr≤n

k1 · · · kr =
n∏

k=1

(1 + kz) = zn
n∏

k=1

(
1

z
+ k

)

= zn+1
n∏

k=0

(
1

z
+ k

)
= zn+1

∑
k≥0

[
n+ 1

k

]
z−k

=

n+1∑
k=0

[
n+ 1

k

]
zn+1−k =

n+1∑
k=0

[
n+ 1

n+ 1− k

]
zk,

so the sum is
[

n+1
n+1−r

]
.

2. Doing something similar with Equations (36) and (28),

G(z) :=
∑
r≥0

∑
1≤k1≤···≤kr≤n

k1 · · · kr =

n∏
k=1

1

1− kz
=

1

zn

∑
k≥n

{
k

n

}
zk

=
∑
k

{
k + n

n

}
zk,

so the sum is
{
n+r
n

}
.

x 25. [M23 ] Evaluate the sum
∑

k

(
n
k

)(
2n−2k
n−k

)
(−2)k by simplifying the equivalent

formula
∑

k[w
k](1− 2w)n[zn−k](1 + z)2n−2k.

By the binomial theorem,

(1− 2w)n =
∑
k≥0

(
n

k

)
(−2)kwk, (1 + z)2n−2k =

∑
j≥0

(
2n− 2k

j

)
zj ,
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so the second formula is indeed equivalent to the first, assuming of course that n ∈ N
and therefore terms with negative k or k > n are null. Now, [zn−k](1 + z)2n−2k =
[zn](zk(1 + z)2n−2k), so this is

S := [zn](1 + z)2n
∑
k

[wk](1− 2w)n
(

z

(1 + z)2

)k

= [zn](1 + z)2n
(
1− 2z

(1 + z)2

)n

,

where we evaluating the sum by taking z
(1+z)2 as the argument of the generating function

in w. Then, we simplify to get

S = [zn]
((

(1 + z)2(1− 2z/(1+z)2)
)n)

= [zn]
(
(1 + z2)n

)
=

(
n
n/2

)
[n even].

1.2.10 Analysis of an Algorithm

1. [10 ] Determine the value of pn0 from Eqs. (4) and (5) and interpret this result
from the standpoint of Algorithm M.
For n = 1, p10 = 1, and for n > 1,

pn0 =
1

n
p(n−1)(−1) +

n− 1

n
p(n−1)0 =

n− 1

n
p(n−1)0 = · · · = n− 1

n

n− 2

n− 1
· · · 1

2
p10 =

1

n
,

so in general the probability that step M4 is never run (which happens when an is
already the maximum value) is pn0 = 1

n .

4. [M10 ] Give an explicit, closed formula for the values of pnk in the coin-tossing
experiment, Eq. (17).
pnk =

(
n
k

)
pkqn−k. To show that this derives from Eq. (17), we see that, when n = 0,

p0k = δk0, matching the formula, and then, by induction,

pnk = ppn−1,k−1 + qpn−1,k =

(
n− 1

k − 1

)
pkqn−k +

(
n− 1

k

)
pkqn−k =

(
n

k

)
pkqn−k.

x 8. [M20 ] Suppose that each X[k] is taken at random from a set of M distinct elements,
so that each of the Mn possible choices for X[1], X[2], . . . , X[n] is considered equally
likely. What is the probability that all the X[k] will be distinct?
We need calculate the number of choices out of those Mn that do not repeat numbers.
These choices can be considered as taking a subset of n elements from those M (if
n > M then we must necessarily repeat) and then ordering them somehow, so the total
number of choices is

(
M
n

)
n!, and the probability is(

M
n

)
n!

Mn
=

M(M − 1) · · · (M − n+ 1)

Mn
=

Mn

Mn
.
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x 11. [M15 ] What happens to the semi-invariants of a distribution if we change G(z)
to F (z) = znG(z)?

Let H(z) := zn, then h(t) := lnH(et) = ln ent = nt, so ḣ(t) = n and ḧ(t) =
...
h (t) =

· · · = 0. Therefore

κ1 = ḣ(0) = n; κn = h(n)(0) = 0, n > 1.

Thus, by Theorem A, the mean increases by n and all the other semi-invariants stay
the same.

x 20. [M22 ] Suppose we want to calculate max{|a1 − b1|, |a2 − b2|, . . . , |an − bn|} when
b1 ≤ b2 ≤ · · · ≤ bn. Show that it is sufficient to calculate max{mL,mR}, where

mL = max{ak − bk | ak is a left-to-right maximum of a1a2 · · · an},
mR = max{bk − ak | ak is a right-to-left minimum of a1a2 · · · an}.

(Thus, if the a’s are in random order, the number of k’s for which a subtraction must
be performed is only about 2 lnn.)

We interpret the concepts of “directional” maximum and minimum as meaning that
ak ≥ ak−1, . . . , a1 or that ak ≤ ak+1, . . . , an, respectively. Then, if aj is not a left-to-
right maximum, there is a k < j with ak > aj and therefore ak − bk > aj − bj (as
bk ≤ bj), so aj − bj is not a maximum of {ak − bk}. Similarly, if aj is not a right-to-left
minimum, there is a k > j with ak < aj and bk − ak > bj − aj .

Thus mL = max{ak − bk} and mR = max{bk − ak}. Since at least one of them is
non-negative, max{mL,mR} is also non-negative and it is therefore |ak − bk| for some
k, and it is no lower than any |aj − bj | as those are either aj − bj or bj − aj .

x 21. [HM21 ] Let X be the number of heads that occur when a random coin is flipped
n times, with generating function (18). Use (25) to prove that

Pr(X ≥ n(p+ ϵ)) ≤ e−ϵ2n/(2q)

when ϵ ≥ 0, and obtain a similar estimate for Pr(X ≤ n(p− ϵ)).

First, we tackle the edge cases. If n = 0, then X = 0 and Pr(X ≥ 0) ≤ 1 trivially, so we
may consider n > 0. If p = 0, then Pr(X = 0) = 1 and Pr(X ≥ nϵ) ≤ e−ϵ2n/2 trivially,
so we may consider p > 0. Finally, if ϵ > q then Pr(X ≥ n(p+ ϵ)) = 0 ≤ e−ϵ2n/(2q) and
if ϵ = q then Pr(X ≥ n) = pn ≤ (e−q)n ≤ e−qn/2, using the fact that t ≤ et−1 for every
t ∈ R, so we may consider ϵ < q and in particular q > 0.

Now let r = n(p + ϵ). Then Pr(X ≥ n(p + ϵ)) ≤ x−n(p+ϵ)(q + px)n, and we just
need to find x ≥ 1 such that

ln(q + px)− (p+ ϵ) lnx ≤ − ϵ2

2q
.
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(I had to look at the solution, esp. for the right value of x.) If x := p+ϵ
p

q
q−ϵ , we have

ln(q + px)− (p+ ϵ) lnx = ln

(
q + (p+ ϵ)

q

q − ϵ

)
− (p+ ϵ) ln

(
p+ ϵ

p

q

q − ϵ

)
=

= ln q − ln(q − ϵ)− (p+ ϵ)(ln q − ln(q − ϵ) + ln(p+ ϵ)− ln p) =

= (q − ϵ) ln
q

q − ϵ
− (p+ ϵ) ln

p+ ϵ

p
,

where we are assuming that ϵ < q. Now, by Eq. 1.2.9(24), let v := ϵ
q ,

(q − ϵ) ln
q

q − ϵ
= q(1− v) ln

1

1− v
= q(v − 1) ln(1− v) =

= q(v − 1)
∑
k≥1

(−1)k+1

k
(−v)k = q(1− v)

∑
k≥1

vk

k
= q

∑
k≥1

vk

k
−
∑
k≥2

vk

k − 1

 =

= q

v −
∑
k≥2

vk

k(k − 1)

 = ϵ− ϵ2

2q
− ϵ3

6q2
− ϵ4

12q3
− · · · ≤ ϵ− ϵ2

2q
.

In addition,

−(p+ ϵ) ln
p+ ϵ

p
= (p+ ϵ) ln

p

p+ ϵ
= (p+ ϵ) ln

(
1− ϵ

p+ ϵ

)
≤ −ϵ,

so −(p+ ϵ) ln p+ϵ
p ≤ ϵ and, putting it all together,

ln(q + px)− (p+ ϵ) lnx ≤ �ϵ−
ϵ2

2q
��−ϵ.

For the second part, switching the roles of heads and tails, let Y := n−X,

Pr(X ≤ n(p− ϵ)) = Pr(Y ≥ n(q + ϵ)) ≤ e−ϵ2n/(2p).

x 22. [HM22 ] Suppose X has the generating function (q1+p1z)(q2+p2z) · · · (qn+pnz),
where pk + qk = 1 for 1 ≤ k ≤ n. Let µ = EX = p1 + p2 + · · ·+ pn.

1. Prove that

Pr(X ≤ µr) ≤ (r−rer−1)µ, when 0 < r ≤ 1;

Pr(X ≥ µr) ≤ (r−rer−1)µ, when r ≥ 1.

2. Express the right-hand sides of these estimates in convenient form when r ≈ 1.

3. Show that if r is sufficiently large we have Pr(X ≥ µr) ≤ 2−µr.
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1. For the first equation, using Eq. (24) with x = r,

Pr(X ≤ µr) ≤ r−µr(q1 + p1r) · · · (qn + pnr) = r−µr
∏
k

(qk + pkr) =

= r−µr
∏
k

(1 + pk(r − 1)) ≤ r−µr
∏
k

epk(r−1) = r−µreµ(r−1) = (r−rer−1)µ.

For the second equation, repeat the same steps but using Eq. (25).

2. When r ≈ 1, r ≈ er−1, so (r−rer−1)µ ≈ rµ(1−r). The inequality still holds for
r < 2 since, in the previous proof, we can see that 1 + pk(r − 1) ≤ rpk by taking
the Taylor series of the logarithms:

ln(1 + pk(r − 1)) = pk(r − 1)− p2k(r − 1)2

2
+

p3k(r − 1)3

3
− p4k(r − 1)4

4
+ · · · ≤

≤ pk(r − 1)− pk(r − 1)2

2
+

pk(r − 1)3

3
− pk(r − 1)4

4
+ · · · = pk ln r.

Using this inequality instead of the one we used gives the proper result.

3. Clearly 1 + pk(r − 1) ≤ r, so r−µr
∏

k(1 + pk(r − 1)) ≤ r−µrrn, and we want to
see that this in turn is less than 2−µr for large enough r. Now,

rnr−µr

2−µr
= rn

(
2

r

)µr

,

and since
(
2
r

)µr decreases faster than rn increases, there exist r0 such that, for
r > r0, this fraction is less than 1.

1.2.11 Asymptotic Representations

1.2.11.1 The O-notation

1. [HM01 ] What is limn→∞ O(n−1/3)?

0.

x 2. [M10 ] Mr. B. C. Dull obtained astonishing results by using the “self-evident”
formula O(f(n))−O(f(n)) = 0. What was his mistake, and what should the right-hand
side of his formula has been?

O(f(n)) is a set of functions, not a single function, so the two O(f(n)) do not cancel
out (for example, the first O(f(n)) could represent f(n) and the second one could be
0). The right hand side should be another O(f(n)).
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x 4. [M15 ] Give an asymptotic expansion of n( n
√
a− 1), if a > 0, to terms O(1/n3).

We can do this by considering the function in terms of x := 1
n , which would be 1

x (a
x−1).

Then ax = ex ln a = 1 + x ln a+ 1
2x

2 ln2 a+ 1
6x

3 ln3 a+O(x4 ln4 a), so

ax − 1 = x ln a+
x2 ln2 a

2
+

x3 ln3 a

6
+O(x4) =

ln a

n
+

ln2 a

2n2
+

ln3 a

6n3
+O(n−4)

and finally

n( n
√
a− 1) = ln a+

ln2 a

2n
+

ln3 a

6n2
+O(n−3).

x 6. [M20 ] What is wrong with the following arguments? “Since n = O(n), and
2n = O(n), ..., we have

n∑
k=1

kn =

n∑
k=1

O(n) = O(n2).”

The second expression does not make sense. It is a sum of n functions each of which
has n as a parameter, but if n is a parameter, it cannot be an “external” parameter of
the function represented by O(n) as well. In this case, it is invalid to move the big O
inside the sum as the range of the sum depends on n and so does the domain of values
k can take, so k, which depends on n, cannot be treated like a constant.

x 11. [M11 ] Explain why Eq. (18) is true.

The first identity is because n
√
n = eln n

√
n = elnn1/n

= elnn/n, taking the power 1/n out
of the logarithm. The second identity is a direct application of Eq. (12), using that
lnn/n→ 0.

x 13. [M10 ] Prove or disprove: g(n) = Ω(f(n)) if and only if f(n) = O(g(n)).
g(n) = Ω(f(n)) if and only if there exist n0 and L such that |g(n)| ≥ L|f(n)| for each
n ≥ n0, but this is the same as saying that, for all such n, |f(n)| ≤ 1

L |g(n)|, which is
to say that f(n) = O(g(n)). Since arguably this L must be positive (otherwise the
statement is trivial), taking 1

L is valid, and likewise, if |f(n)| ≤M |g(n)| for each n ≥ n0

and some M , we can always make this M positive to make the reverse argument.

1.2.11.2 Euler’s summation formula

x 4. [HM20 ] (Sums of powers.) When f(x) = xm, the high-order derivatives of f are
all zero, so Euler’s summation formula gives an exact value for the sum

Sm(n) =
∑

0≤k<n

km

in terms of Bernoulli numbers. (It was the study of Sm(n) for m = 1, 2, 3, . . . that
led Bernoulli and Seki to discover those numbers in the first place.) Express Sm(n) in
terms of Bernoulli polynomials. Check your answer for m = 0, 1, and 2. (Note that
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the desired sum is performed for 0 ≤ k < n instead of 1 ≤ k < n; Euler’s summation
formula may be applied with 0 replacing 1 throughout.)

For k ≥ 0, we have f (k)(x) = mkxm−k. If k < m, this is nonzero except that f (k)(0) = 0;
if k = m, f (m)(x) ≡ 1, and if k > m, f (k)(x) ≡ 0. Using Euler’s summation formula,
when m ≥ 1,

Sm(n) =
∑

0≤k<n

km =

∫ n

0

xmdx+
m∑

k=1

Bk

k!
mk−1nm−k+1 =

nm+1

m+ 1
+

m∑
k=1

Bk

m− k + 1

(
m

k

)
nm−k+1.

Then,

S′
m(n) = nm +

m∑
k=1

Bk

(
m

k

)
nm−k =

∑
k

Bk

(
m

k

)
nm−k = Bm(x),

which means that ∫ n

0

Bm = (Sm(n)− Sm(0)) = Sm(n)

and therefore,

Sm(n) =

∫ n

0

Bm.

Now we check the solution, and in particular we check that this works for m = 0 as
well:∫ n

0

B0 =

∫ n

0

dx = n− 0 = n, S0(n) =
∑

0≤k<n

1 = n;

∫ n

0

B1 =

∫ n

0

(x− 1
2 )dx =

n2 − n

2
, S1(n) =

∑
0≤k<n

k =
n(n− 1)

2
;

∫ n

0

B2 =

∫ n

0

(x2 − x+ 1
6 )dx =

2n3 − 3n2 + n

6
,

and we check the last result we use induction. For n = 0, S2(0) = 0. For n ≥ 0,

S2(n) =
1

6

(
2(n− 1)3 − 3(n− 1)2 + (n− 1)

)
+ (n− 1)2

=
1

6

(
2n3

���−6n2���+6n��−2− 3n2���+6n��−3 + n��−1���+6n2���−12n��+6
)
=

∫ n

0

B2.

x 9. [M25 ] Find the asymptotic value of
(
2n
n

)
with a relative error of O(n−3), in two

ways:

1. via Stirling’s approximation;

2. via exercise 1.2.6–47 and Eq. 1.2.11.1–(16).
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1. We have, (
2n

n

)
=

(2n)!

n!2
,

so

ln

(
2n

n

)
= ln(2n)!− 2 ln(n!) =

= (2n+ 1
2 ) ln(2n)− 2n+ σ +

1

24n
− (2n+ 1) lnn+ 2n− 2σ − 1

6n
+O(n−3) =

= (2n+ 1
2 )(lnn+ ln 2)− (2n+ 1) lnn− σ − 1

8n
+O(n−3) =

= (2n+ 1
2 ) ln 2−

lnn

2
− σ − 1

8n
+O(n−3),

and therefore(
2n

n

)
= exp(· · · ) = 22n√

πn

(
1− 1

8n
+

1

128n2
+O(n3)

)
.

2. (I had to look up the solution.)Exercise 1.2.6–47, when r = −1/2, the first identity
simplifies to

(−1)k
(
− 1

2

k

)
= (−1)k

(
−k − 1

k

)/
4k =

(
2k

k

)/
4k.

Thus, using Eq. 1.2.6–(21),(
2n

n

)
= 4n(−1)n

(
− 1

2

n

)
= 4n

(
n− 1

2

n

)
= 4n

Γ(n+ 1
2 )

Γ(n+ 1)Γ( 12 )
= 4k

Γ(n+ 1
2 )

nΓ(n)
√
π

=

=
4nn1/2

n
√
π

=
22n

n
√
π

([
1/2

1/2

]
n1/2 +

[
1/2

−1/2

]
n−1/2 +

[
1/2

−3/2

]
n−3/2 +O(n−5/2)

)
.

Using Eqs. 1.2.6–(48), (49), and (57),[
1/2

1/2

]
= 1,[

1/2

−1/2

]
=

(
1/2

2

)
=

1
2 (−

1
2 )

2
= −1

8
,[

1/2

−3/2

]
=

(
1/2

4

)
+ 2

(
3/2

4

)
=
− 15

16

24
+ 2

9
16

24
=

3

16 · 24
=

1

128
,

so in the end, (
2n

n

)
=

22n√
πn

(
1− 1

8n
+

1

128n2
+O(n−3)

)
.
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1.2.11.3 Some asymptotic calculations

x 4. [HM10 ] Prove Eq. (13).
Since u ≥ 0, ln(1 + u) ≥ 0 and u = v + ln(1 + u) ≥ v. On the other hand, x is fixed
with respect to v, so by monotonicity of the integral, if v ≥ 1,

0 ≤
∫ ∞

r

xe−xv

(
1 +

1

u

)
dv ≤

∫ ∞

r

xe−xv

(
1 +

1

v

)
dv ≤

∫ ∞

r

2xe−xv =

= −2e−xv
∣∣∞
v=r

= 2e−rx.

This means
∫∞
r

xe−xv
(
1 + 1

u

)
dv = O(e−rx).

x 6. [HM20 ] Prove Eq. (23).

(n+ α)n+β = nn+β
(
1 +

α

n

)n+β

.

For the second factor,

ln
(
1 +

α

n

)n+β

= (n+ β) ln
(
1 +

α

n

)
= (n+ β)

(
α

n
− α2

2n2
+O(n−3)

)
=

= α+
1

n

(
αβ − α2

2

)
+O(n−2),

so

nn+β
(
1 +

α

n

)n+β

= nn+βeα exp

(
1

n

(
αβ − α2

2

)
+O(n−2)

)
=

nn+βeα
(
1 +

α

n

(
β − α

2

)
+O(n−2)

)
.

1.3 MIX

1.3.1 Description of MIX

1. [00 ] If MIX were a ternary (base 3) computer, how many “trits” would there be per
byte?
The only power of 3 between 64 and 100 is 34 = 81, so there would be 4 trits.

2. [02 ] If a value to be represented within MIX may get as large as 99999999, how
many adjacent bytes should be used to contain this quantity.
Since lg 99999999 ∈ (26, 27), we’d need 27 bits, so 5 bytes.

61



1.3. MIX CHAPTER 1. BASIC CONCEPTS

3. [02 ] Give the partial field specifications, (L : R), for the (a) address field, (b) index
field, (c) field field, and (d) operation code field for a MIX instruction.
(0 : 2), (3 : 3), (4 : 4), and (5 : 5), respectively.

4. [00 ] The last example in (5) is ‘LDA -2000,4’. How can this be legitimate, in view
of the fact that memory addresses should not be negative?
Because we’re assuming that r4 is at least 2000.

5. [10 ] What symbolic notation, analogous to (4), corresponds to (6) if (6) is regarded
as a MIX instruction?
DIV -80,3.

x 6. [10 ] Assume that location 3000 contains

+ 5 1 200 15

What is the result of the following instructions? (State if any of them are undefined
or only partially defined.)

1. LDAN 3000;

2. LD2N 3000(3:4);

3. LDX 3000(1:3);

4. LD6 3000;

5. LDXN 3000(0:0).

1. Set A to - 5 1 200 15 .

2. Set I2 to - 200 .

3. Set X to + 0 0 5 1 ? (the last byte is undefined).

4. Undefined.

5. Set X to - 0 0 0 0 0 .

x 9. [15 ] List all the MIX operators that can possibly affect the setting of the overflow
toggle. (Don not include floating point operators.)
ADD, SUB, DIV, INCA, INCX, DECA, DECX, NUM, JOV, JNOV.

62



CHAPTER 1. BASIC CONCEPTS 1.3. MIX

x 11. [15 ] List all the MIX operators that can possibly affect the setting of rI1.
MOVE, LD1, LD1N, INC1, DEC1, ENT1, ENN1.

12. [10 ] Find a single instruction that has the effect of multiplying the current
contents of rI3 by two and leaving the result in rI3.
INC3 0,3.

x 13. [10 ] Suppose location 1000 contains the instruction ‘JOV 1001’. This instruction
turns off the overflow toggle if it is on (and the next instruction executed will be in
location 1001, in any case). If this instruction were changed to ‘JNOV 1001’, would
there be any difference? What if it were changed to ‘JOV 1000’ or ‘JNOV 1000’?
There wouldn’t be any difference after changing it to ‘JNOV 1001’ aside from the contents
of register J. If it’s changed to ‘JOV 1000’, the only difference would be the timing, but
if it’s changed to ‘JNOV 1000’, an infinite loop would occur if the overflow toggle wasn’t
previously on.

15. [10 ] How many alphameric characters are there in a typewriter or paper-tape
block? in a card-reader or card-punch block? in a line-printer block?
70 characters in a typewriter or paper-tape block, 80 in a card-reader or card-punch
block, and 120 in a line-printer block. This is because each word can hold up to 5
characters.

x 18. [22 ] After the following “number one” program has been executed, what changes
to registers, toggles, and memory have taken place? (For example, what is the setting
of rI1? of rX? of the overflow an comparison indicators?

STZ 1
ENNX 1
STX 1(0:1)
SLAX 1
ENNA 1
INCX 1
ENT1 1
SRC 1
ADD 1
DEC1 -1
STZ 1
CMPA 1
MOVE -1,1(1)
NUM 1
CHAR 1
HLT 1
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Assuming the program doesn’t start at 0000, the result is:
Position Content

Address 1 + 0 0 0 0 0
Address 2 + 0 0 0 0 0

rX - 31 30 30 30 30
rA - 30 30 30 30 30

Position Content
rI1 + 0 2

Overflow ON
Comparison EQUAL

x 19. [14 ] What is the execution time of the program in the preceding exercise, not
counting the HLT instruction?
42 units of time.

x 21. [24 ]

1. Can the J-register ever be zero?

2. Write a program that, given a number N in rI4, sets register J equal to N ,
assuming that 0 < N ≤ 3000. Your program should start in location 3000. When
your program has finished its execution, the contents of all memory cells must be
unchanged.

1. Maybe at startup, but then only before the first jump is executed.

2. LDX -1,4
ENTA 3006
SLA 3
INCA 39 ; [|+||3006|0|0|39| -> JMP 3006]
STA -1,4
JMP -1,4
STX -1,4 ; position 3006
HLT

x 22. [28 ] Location 2000 contains an integer number, X. Write two programs that
compute X13 and halt with the result in register A. One program should use the
minimum number of MIX memory locations; the other should require the minimum
execution time possible. Assume that X13 fits into a single word.
Minimum time, since the conditions imply |X| ≤ 5:

LD1 2000
LDA 3500,1

Then at positions 3495 to 3505 we’d have a table of precomputed results. This uses
a total of 2 words for the instructions and 11 words for the table.

Minimum number of memory locations, assuming the program starts at position 0:
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LDA 2000
ENT1 12
MUL 2000
SLAX 5
DEC1 1
J1NZ 2

This uses a total of 6 words for the instructions but no additional memory.

x 25. [30 ] Suppose that the manufacturer of MIX wishes to come out with a more
powerful computer (“Mixmaster”?), and he wants to convince as many people as possible
of those people now owning a MIX computer to invest in the more expensive machine.
He wants to design this new hardware to be an extension of MIX, in the sense that
all programs correctly written for MIX will work on the new machines without change.
Suggest desirable things that could be incorporated in this extension. (For example,
can you make better use of the I-field of an instruction?)
Some of the ways that MIX could be extended would be:

1. Make the machine work faster through pipelining and other techniques.

2. Allocate additional memory. A way to do this would be to expand the size of the
index registers to be one full word, allowing for 1Gword (equivalent to 4GB by
modern standards). Then we’d have 8 full-word registers, a bare minimum for
modern processors.

3. For normal instructions, instead of having the I-field specify a range, it could be
used to specify which of the six fields are being used, since we are warrantied at
least six bits, allocating the corresponding floating point instructions in the F-field
value that doesn’t select any of the fields (the null value). For compatibility, we
can’t use the trivial binary representation for this, so we have to use a non-trivial
mapping.

4. Many more floating-point instructions could be allocated in the null value of
the I-field, such as square root, sine, cosine, etc. These could be allocated on
instruction code 5 (special).

5. 8-bit compatibility would be desirable, but on a binary MIX, we only have 31 bits
per word. One way to achieve compatibility is to add an extra bit per word that’s
not used by legacy MIX programs and extend the F-field in the following way: if
the value in the field is at least 48, we take the 4 least significant bits and divide
that into two groups: one for the lower part of the range,which would be specified
in bytes, and one for the upper part.

This would allow operating on bytes, and it would be incompatible with the
previous proposal to extend the F-field. For other values of the I-field, the extra
bit would be ignored.

6. In the case the 8-bit compatibility is implemented, it’d be nice to have a way
to address individual bytes and half-words without case distinctions or code
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Name F Description
PSET 1 Set the beginning of the privileged section to M . By default, it’s

0. When an exception occurs, A is saved to the first word in the
privileged section, the next word contains the reason of the
exception, the next contains a pointer to the instruction that was
being run and the next contains the start of the
exception-processing code, to be run in privileged mode.
Exceptions are disabled by default.

PGET 2 Copy the address of the privileged section start to rI1.
PUSR 3 Change to user (non-privileged) mode; jump to M and set J to 0.
VCAL 4 Change to kernel (privileged) code; like an exception, with the

reason being 0 in 0:0.
VSET 5 Enable virtual memory, switch to the page table M and flush the

TLB. Virtual memory addresses are 12-12-10 and each word in a
table contains the address (1:4), an enable/disable flag (0:0), and
read-write permissions (least significant 2 bits on 4:4), plus
anything the OS wants to put in 5:5. When a page fault occurs,
an exception happens with reason 1 in 0:0. Changes in an active
page mapping have unspecified behavior when trying to access a
page that depends on that before flushing the TLB.

VFLS 6 Flush the TLB. The I-field must be 0.
VDIS 7 Disable virtual memory and jump to M .
EINT 8 Enable/disable interrupts for the device in the I-field, depending

on whether the sign is positive or negative. Interrupts are
exceptions with reason 3 in 0:0 and the device ID in 1:1.

AEX 9 Enable/disable all exceptions, depending on whether the sign is
positive or negative. The result of triggering an exception that’s
not an interrupt is unspecified.

WAIT 10 Wait until some device is ready.

Figure 1.1: System instructions for MIXMaster.

modifications. This could be done with a special value 6 (half-word) and 7 (byte)
for the F-field in load and store instructions, which would use the full 32-bits of
the specified index register.

7. Values 7 and 8 for the I-field could be used to mean registers A and X.

8. Values 16 to 24 for the I-field could be used for register to register arithmetic.
Then the I-field minus 16 would be the destination operand and the source operand
would be the one specified by the first part of the address with the fields given by
the second part, with the same format than an F-field.

9. Memory protection and memory management could be implemented by changing
the F-field of the NOP operation, with the instructions shown in table 1.1.

All of those instructions except VCAL are illegal in user mode, along with HLT, JBUS,
IOC, IN, OUT, and JRED. Instructions that had unspecified behavior now cause an
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exception with type 4 in 0:0, provided that exceptions are enabled. Nonetheless,
the operating system is expected to treat those exceptions and act accordingly,
usually by checking for authorization and simulating the effects of the instructions
as if they were system calls.

10. Bitwise operations and shifts could be added.

11. An IOC number could be used to return the number of bytes per chunk for a
device, and another number could be self-describing, to tell the type of the device.
This would allow for more device types to be added, such as USB, Ethernet, PCI,
video, timer, etc., given a standard for differentiating those.

1.3.2 The MIX Assembly Language
1. [00 ] The text remarked that ‘X EQU 1000’ does not assemble any instruction that

sets the value of a variable. Suppose that you are writing a MIX program in which the
algorithm is supposed to set the value contained in certain memory cell (whose symbolic
name is X) equal to 1000. How could you express this in MIXAL?

ENTA 1000
STA X

x 2. [10 ] Line 12 of program M says ‘JMP *’, where * denotes the location of that line.
Why doesn’t the program go into an infinite loop, endlessly repeating this instruction?
Because, at the entry point of the function, the code self-modifies, changing that
instruction to a jump to the next instruction of the routine that called program M.

x 3. [23 ] What is the effect of the following program, if it is used in conjunction with
Program M?

START IN X+1(0)
JBUS *(0)
ENT1 100

1H JMP MAXIMUM
LDX X,1
STA X,1
STX X,2
DEC1 1
J1P 1B
OUT X+1(1)
HLT
END START

It reads 100 numbers from tape 0 and prints them sorted in nondecreasing order to
tape 1. It first reads the 100 numbers, and then it finds the maximum of the elements,
exchanges it with the last element in the list and repeats that with the list made of of
all the remaining elements. Finally, it outputs the result. This is known as bubble sort,
the slowest sensible sorting algorithm, with complexity O(n2).
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3000 + 0 0 18 35
3001 + 2051 0 5 9
3002 + 2050 0 5 10
3003 + 1 0 0 49
3004 + 499 1 5 26
3005 + 3016 0 1 41
3006 + 2 0 0 50
3007 + 2 0 2 51
3008 + 0 0 2 48
3009 + 0 2 2 55
3010 - 1 3 5 4
3011 + 3006 0 1 47
3012 - 1 3 5 56
3013 + 1 0 0 51
3014 + 3008 0 6 39
3015 + 3003 0 0 39
3016 + 1995 0 18 37
3017 + 2035 0 2 52
3018 - 50 0 2 53
3019 + 501 0 0 53

3020 - 1 5 5 8
3021 + 0 0 1 5
3022 + 0 4 12 31
3023 + 1 0 1 52
3024 + 50 0 1 53
3025 + 3020 0 2 45
3026 + 0 4 18 37
3027 + 24 4 5 12
3028 + 3019 0 0 45
3029 + 0 0 2 5
0000 + 2
1995 + 6 9 19 22 23
1996 + 0 6 9 25 5
1997 + 0 8 24 15 4
1998 + 19 5 4 0 17
1999 + 19 9 14 5 22
2024 + 2035
2049 + 2010
2050 + 3
2051 - 499

Figure 1.2: Machine code for Program P.

x 4. [25 ] Assemble Program P by hand. (It won’t take as long as you think.) What are
the actual numerical contents of memory, corresponding to that symbolic program?
See figure 1.2.

7. [10 ]

1. What is the meaning of ‘4B’ in line 34 of Program P?

2. What effect, if any, would be cause if the location of line 15 were changed to ‘2H’
and the address of line 20 were changed to ‘2B’?

1. It references the address at line 29, the first previous line with label ‘4H’.

2. Line 14 would reference line 15 instead of line 25 and line 24 would reference line
15 instead of line 12.

x 8. [24 ] What does the following program do? (Do not run it on a computer, figure it
out by hand!)

* MYSTERY PROGRAM
BUF ORIG *+3000
1H ENT1 1

ENT2 0
LDX 4F
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2H ENT3 0,1
3H STZ BUF ,2

INC2 1
DEC3 1
J3P 3B
STX BUF ,2
INC2 1
INC1 1
CMP1 =75=
JL 2B
ENN2 2400
OUT BUF +2400 ,2(18)
INC2 24
J2N *-2
HLT

4H ALF AAAAA
END 1B

An analysis shows that the code is not self-modifying and that it’s equivalent to the
following pseudo-C:

r2 = 0;
x = *"AAAAA ";
for (r1 = 1; r1 < 75; r1++) {

for (or3m75 = 0; or3m75 < r1; or3m75 ++)
*r2++ = 0;

*r2++ = x;
}
for (f2i24p100 = 0; r2i24p100 < 100; r2i24p100 ++)

write(PRINTER , r2i24p100 * 24);

The program code begins at position 3000, and the programs writes until position

(2 + · · ·+ 75)− 1 = (1 + · · ·+ 74) + 74− 1 =
74 · 75

2
+ 74− 1 =

74 · 77
2
− 1 = 2848,

so the code is indeed not self-modifying. For each iteration i from 1 to 74, the code
stores 5i spaces and then 5 A’s, and then the code prints the first 12000 characters
from those.

As an aside, the same effect can be obtained with the following actual C code,
provided there are no runtime errors:

#include <stdio.h>
#include <string.h>

int main()
{

char buffer [15000];
int i, j, k = 0;
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for (i = 1; i < 75; i++) {
for (j = 0; j < i; j++)

strcpy(buffer + 5*(k++), " ");
strcpy(buffer + 5*(k++), "AAAAA ");

}
for (i = 0; i < 100; i++) {

fwrite(buffer + 120*i, 120, 1, stdout );
putchar(’\n’);

}
return 0;

}

x 9. [25 ] Location INST contains a MIX word that purportedly is a MIX instruction.
Write a MIX program that jumps to location GOOD if the word has a valid C-field, valid
±AA-field, valid I-field, and valid F-field, according to Table 1.3.1–1; your program
should jump to location BAD otherwise. Remember that the test for a valid F-field
depends on the C-field; for example, if C = 7 (MOVE), any F-field is acceptable, but if
C = 8 (LDA), the F-field must have the form 8L+R where 0 ≤ L ≤ R ≤ 5. The “±AA”-
field is to be considered valid unless C specifies an instruction requiring a memory
address and I = 0 and ±AA is not a valid memory address.

Note: Inexperienced programmers tend to tackle a problem like this by writing
a long series of tests on the C-field, such as ‘LDA C; JAZ 1F; DECA 5; JAN 2F; JAZ
3F; DECA 2; JAN 4F; ...’. This is not good practice! The best way to make multiway
decisions is to prepare an auxiliary table containing information that encapsulates the
desired logic. If there were, for example, a table of 64 entries, we could write ‘LD1 C;
LD1 TABLE,1; JMP 0,1’—thereby jumping very speedily to the desired routine. Other
useful information can also be kept in such a table. A tabular approach to the present
problem makes the program only a little bit longer (including the table) and greatly
increases its speed and flexibility.

ADDR EQU 0:2
INDEX EQU 3:3
FIELD EQU 4:4
CODE EQU 5:5

LD1 INST(CODE)
LD3 INST(INDEX) ; Load I-field
ENTA -6,3 ; Check if I-field > 6
JAP BAD
J3NZ 2F ; I-field nonzero , skip AA test
LDX TABLE ,1(0:0)
ENTX 1(5:5) ; 1 when AA is address , -1 otherwise
JXN 2F
LDA INST(ADDR)
JAN BAD ; Addr relevant , index 0, addr negative

2H LDA INST(FIELD) ; Field test: dispatch
LD1 TABLE ,1(4:5)
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JMP 0,1
BOUND CMPA TABLE ,1(3:3); F-field in [0,CONTENTS(TABLE ,1(3:3))]

JL GOOD
JMP BAD

RANSX CMPA =6= ; F-field in range or 6
JE GOOD

RANGE SRAX 5 ; rAX is the F-field
DIV =8= ; rA:rX is the F-field
CMPA FIVE
JG BAD
CMPX FIVE
JG BAD
STA *+1(0:2) ; rX -= rA
DECX *
JXN BAD ; If rX < rA, dat ’s bad
JMP GOOD

; Format is Sign (0:0), F-field test (4:5), where Sign is
; positive iff the +/-AA field represents an address and
; F-field test jumps to GOOD if the F-field is valid for the
; given case or to BAD otherwise. Fields 1:3 may contain
; specific information
IODEV EQU 21(0:3) , BOUND (4:5) ; Field is I/O device
JMPBY EQU 6(0:3) , BOUND (4:5) ; Field is Jx+
IMMAT EQU 4(0:3) , BOUND (4:5) ; Field is INCx/DECx/ENTx/ENNx
TABLE CON -GOOD ; NOP

CON RANSX ; ADD/FADD
CON RANSX ; SUB/FSUB
CON RANSX ; MUL/FMUL
CON RANSX ; DIV/FDIV
CON -3(0:3), BOUND (4:5) ; NUM/CHAR/HLT
CON -6(0:3), BOUND (4:5) ; SLA/SRA/SLAX/SRAX/SLC/SRC
CON GOOD ; MOVE
CON RANGE ; LDA
CON RANGE ; LD1
CON RANGE ; LD2
CON RANGE ; LD3
CON RANGE ; LD4
CON RANGE ; LD5
CON RANGE ; LD6
CON RANGE ; LDX
CON RANGE ; LDAN
CON RANGE ; LD1N
CON RANGE ; LD2N
CON RANGE ; LD3N
CON RANGE ; LD4N
CON RANGE ; LD5N
CON RANGE ; LD6N
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CON RANGE ; LDXN
CON RANGE ; STA
CON RANGE ; ST1
CON RANGE ; ST2
CON RANGE ; ST3
CON RANGE ; ST4
CON RANGE ; ST5
CON RANGE ; ST6
CON RANGE ; STX
CON RANGE ; STJ
CON RANGE ; STZ
CON IODEV ; JBUS
CON -IODEV ; IOC
CON IODEV ; IN
CON IODEV ; OUT
CON IODEV ; JRED
CON 10(0:3) , BOUND (4:5) ; JMP/JSJ/JOV/JNOV/*
CON JMPBY ; JA+
CON JMPBY ; J1+
CON JMPBY ; J2+
CON JMPBY ; J3+
CON JMPBY ; J4+
CON JMPBY ; J5+
CON JMPBY ; J6+
CON JMPBY ; JX+
CON IMMAT ; INCA/DECA/ENTA/ENNA
CON IMMAT ; INC1 /...
CON IMMAT ; INC2 /...
CON IMMAT ; INC3 /...
CON IMMAT ; INC4 /...
CON IMMAT ; INC5 /...
CON IMMAT ; INC6 /...
CON IMMAT ; INC7 /...
CON RANSX ; CMPA/FCMP
CON RANGE ; CMP1
CON RANGE ; CMP2
CON RANGE ; CMP3
CON RANGE ; CMP4
CON RANGE ; CMP5
CON RANGE ; CMP6
CON RANGe ; CMPX

FIVE CON 5
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1.3.3 Applications to permutations

1. [02 ] Consider the transformation of {0, 1, 2, 3, 4, 5, 6} that replaces x by 2x mod 7.
Show that this transformation is a permutation, and write it in cycle form.

Being a permutation follows from the fact that Z7 is a field. In cycle form, this would
be (1 2 4)(3 6 5).

2. [10 ] The text shows how we might set (a, b, c, d, e, f)→ (c, d, f, b, e, a) by using a
series of replacement operations (x← y) and one auxiliary variable t. Show how to do
the job by using a series of exchange operations (x↔ y) and no auxiliary variables.

Since the permutation such that (a, b, c, d, e, f)→ (c, d, f, b, e, a) such that xi → σ(xi)
is (a c f)(b d), we could use a↔ c, c↔ f, b↔ d.

3. [03 ] Compute the product
(
a b c d e f
b d c a f e

)
×
(
a b c d e f
c d f b e a

)
, and

express the answer in two-line notation.(
a b c d e f
d b f c a e

)
.

4. [10 ] Express (a b d)(e f)(a c f)(b d) as a product of disjoint cycles.

(a d c f e)

x 5. [M10 ] Equation (3) shows several equivalent ways to express the same permutation
in cycle form. How many different ways of writing that permutation are possible, if all
singleton cycles are suppressed?

There are 2 cycles which can be ordered in 2! = 2 different ways, and since an m-cycle
can be written in m different ways, there are 2! · 2 · 3 = 12 possible ways to write the
permutation in cycle form.

7. [10 ] If Program A is presented with the input (6), what are the quantities X,
Y , M , N , U , and V of (19)? What is the time required by Program A, excluding
input-output?

X is the number of cards of input, namely ⌈30/24⌉ = 2 if no space is added; then
Y = 29. M = 5, the number of cycles in input, and N = 7, the number of different
elements. Then, since the output is (a d g)(c e b)(f), U = 3, the number of cycles in the
output, and V = 1, the number of singleton cycles.

Then the time required, excluding input-output, is

112NX + 304X − 2M − Y + 11U + 2V − 11 =

= 112 · 7 · 2 + 304 · 2− 2 · 5− 29 + 11 · 3 + 2 · 1− 11 = 2161u.
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x 8. [23 ] Would it be feasible to modify Algorithm B to go from left to right instead of
from right to left through the input?
Yes, if we’re allowed to use an extra step for inverting the result. For this algo-
rithm, we use an auxiliary table U [1], . . . , U [n] where we obtain the inverse of the
permutation. We calculate it by noticing that (a11 . . . a1m1) · · · (ak1 · · · akmk

) =
((akmk

. . . ak1) · · · (a1m1
. . . a11))

−1.

B1. [Initialize.] Set U [k]→ k for 1 ≤ k ≤ n. Also, prepare to scan the input from left
to right.

B2. [Next element.] Examine the next element of the input. If the input has been
exhausted, go to step B5. If the element is a ‘(’, set Z ← 0 and repeat step B2; if
it is a ‘)’, go to B4. Otherwise the element is xi for some i, go on to B’3.

B3. [Change U [i].] Exchange Z ↔ U [i]. If this makes U [i] = 0, set j ← i. Return to
step B2.

B4. [Change U [j].] Set U [j]← Z. Return to step B2.

B5. [Invert permutation.] For 1 ≤ k ≤ n, set T [U [i]]← i.

9. [10 ] Both Programs A and B accept the same input and give the answer in
essentially the same form. Is the output exactly the same under both programs?
No. For example, for input (6), Program A produces (a d g)(c e b)(f) while Program B
produces (a d g)(b c e)(f).

x 13. [M24 ] Prove that Algorithm J is valid.
We prove it by induction. Let σ be the original permutation, it’s enough to show that,
when entering step J2, or when exiting step J5, for each j ∈ {1, . . . , n}, if σ−1(j) > m,
X[j] = σ−1(j), and otherwise X[j] = −σk+1(j) where k is the least nonnegative integer
with σk(j) ≤ m (if there were no such number, since σ−1(j) = σp(j) for some p ≥ 0,
then it would be σ−1(j) > m).

If we enter J2 from J1, every X[j] < 0, every j ≤ m = n, so k = 1 and what we
have to prove is that X[j] = −σ(j), which obviously holds. Now, provided that this
holds when we enter J2, we have to show that it holds when we reach J5 and the proof
is complete.

After steps J2 and J3, obviously the condition still holds. After these steps, i =
−σ(m) and j is such that i = X[j]. We prove this by induction, showing that,
after k ≥ 1 steps, i is either −σ(m) < 0 or σ−k(m) > 0, and in the latter case,
σ−k(m), σ−k+1(m), . . . , σ−1(m) > m.

After one iteration, i = X[m]; if i > 0, i = σ−1(m) > m; otherwise i = −σp+1(m),
where p is the least nonnegative integer with σp(m) ≤ m, but since p = 0, i = −σ(m).
Now assume that this still holds after k iterations, and that i > 0 so there’s a (k+1)-th
iteration. Then j = σ−k(m) > 0 and we assign X[j] to i. If i > 0, i = σ−1(σ−k(m)) =
σ−k−1(m) > m; otherwise i = −σp+1(σ−k(m)), where p is the least nonnegative integer
with σp−k(m) ≤ m, but σ−k(m), . . . , σ−1(m) > m and σ0(m) = m, so p = k and
i = −σk+1(σ−k(m)) = −σ(m).
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Now, at the beginning of step J4, i = −σ(m) and j is such that, if k is the least
nonnegative integer with σk(j) ≤ m, then σk+1(j) = σ(m). Then the new value of
X[j] is X[−i] = X[σ(m)] = −σp+1(m), where p is the least positive integer with
σp(m) ≤ m, the new value of X[−i] = X[σ(m)] is m = σ−1(σ(m)) and the new value
of m is m − 1. Since σ−1(σ(m)) > m− 1, the condition holds for X[σ(m)] = X[−i]:.
Also, X[j] = −σp+1(m) = −σp+k+1(j), j, σ(j), . . . , σk−1(j), σk(j) = m,σk+1(j) =
σ(m), . . . , σp+k(j) = σp−1(m) > m − 1, and because σp+k+1(j) = σp(m) ≤ m, and
σp(m) ̸= m because otherwise it would be either p ≤ k and σk−p(j) = m#, or p > k
and σp(j) = σp−k(m) = j ≤ m#, then we have σp+k+1(j) = σp(m) ≤ m− 1, and the
condition holds for X[j].

Now the only thing left to prove is that step J3 always ends, for which it suffices to
prove that the cycle that m is in contains an element t with X[t] < 0, which happens if
and only if it contains a t with σ−1(t) ≤ m, if and only if there’s an element not greater
than m, but m is such an element.

x 26. [M24 ] Extend the principle of inclusion and exclusion to obtain a formula for
the number of elements that are in exactly r of the subsets S1, S2, . . . , SM . (The text
considers only the case r = 0.)
For the sake of abbreviation, let Er be the number of elements that are exactly in r of
the subsets and let

Tr :=
∑

1≤j1<···<jr≤M

|Sj1 ∩ · · · ∩ Sjr |,

so that T0 = N (we use the convention that the intersection of no subsets is the intended
“domain” set), TM = |S1 ∩ · · · ∩ SM |, and for r > M , Tr = 0.

Obviously Er = 0 for r > M , and EM = TM . After calculating EM−1 and EM−2,
we formulate the hypothesis that

Er =

M∑
k=r

(−1)k−r

(
k

r

)
Tk

for 0 ≤ r ≤ M , which matches what we know about EM and E0. We prove this by
induction from r = M to 0. We have already established the base case. For r < M , we
start by pointing out that, for r ≤ k ≤M , Tr counts the elements that appear exactly k
times a total of

(
k
r

)
times, corresponding to choosing the r indexes from those k indexes

that contain the element. Thus Tr =
∑M

k=r

(
k
r

)
Ek, so

Er = Tr −
M∑

k=r+1

(
k

r

)
Ek = Tr −

M∑
k=r+1

(
k

r

) M∑
j=k

(−1)j−k

(
j

k

)
Tj

= Tr −
M∑

j=r+1

(
j∑

k=r+1

(−1)j−k

(
j

k

)(
k

r

))
Tj ,

but by Eq. 1.2.6–(23),

j∑
k=r+1

(−1)j−k

(
j

k

)(
k

r

)
=

j∑
k=r

(−1)j−k

(
j

k

)(
k

r

)
−(−1)j−r

(
j

r

)
=
�

�
�
�(

0

r − j

)
=0−(−1)j−r

(
j

r

)
,
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and so

Er = Tr +

M∑
j=r+1

(−1)j−r

(
j

r

)
Tj =

M∑
j=r

(−1)j−r

(
j

r

)
Tj .

x 34. [M25 ] (Transposing blocks of data.) One of the most common permutations
needed in practice is the change from αβ to βα, where α and β are substrings of an array.
In other words, if x0x1 . . . xm−1 = α and xmxm+1 . . . xm+n−1 = β, we want to change
the array x0x1 . . . xm+n−1 = αβ to the array xmxm+1 . . . xm+n−1x0x1 . . . xm−1 = βα;
each element xk should be replaced by xp(k) for 0 ≤ k < m + n, where p(k) =
(k +m) mod (m + n). Show that every such “cyclic-shift” permutation has a simple
cycle structure, and exploit that structure to device a simple algorithm for the desired
rearrangement.

Let d := gcd{m,n}, then p = C0C1 · · ·Cd−1 where

Cj := (j (m+ j) (2m+ j) . . . ((nd − 1)m+ j)) (mod n).

Effectively, each of the cycles above contains only elements with the same value modulo
d, so the cycles are disjoint, and for any k ∈ {0, . . . , n− 1}, let p and q be the quotient
and remainder of k/d and am+ bn = d be a Bézout identity, then

k = pd+ q = pam+ pbn+ q ≡ pam+ q ≡ (pa mod n/d)m (mod n).

We can use this in the following algorithm.
Algorithm T. (Transpose blocks of data.)

1. [Initialize.] Set d← m, N ← m+ n, and j ← −1.

2. [Calculate d.] Set n← n mod d. If n ̸= 0, set d↔ n and repeat this step.

3. [Set up cycle.] Increment j by 1. If j = d, terminate the algorithm. Otherwise set
k ← j and s← xj .

4. [Iterate.] Set l ← (k + m) mod (m + n). If l = j, set xk ← s and go to the
previous step. Otherwise set xk ← xl, k ← l, and repeat this step.

1.4 Some Fundamental Programming Techniques

1.4.1 Subroutines

1. [10 ] State the characteristics of subroutine (5), just as (4) gives the characteristics
of Subroutine 1.3.2M.

Calling sequences: JMP MAX100 if n = 100, or JMP MAXN.
Entry conditions: For MAXN, rI3 = n; n ≥ 1.
Exit conditions: rA = maxnk=1 CONTENTS(X+ k) = CONTENTS(X+ rI2);

rI3 = 0.


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2. [10 ] Suggest code to substitute for (6) without using the JSJ instruction.

MAX50 ENT3 50
STJ EXIT
JMP MAXN

EXIT JMP *

x 4. [21 ] White a subroutine that generalizes MAXN by finding the maximum value of
X[a], X[a + r], X[a + 2r], . . . , X[n], where r and n are parameters and a is the smallest
positive number with a ≡ n (mod r), namely a = 1 + (n − 1) mod r. Give a special
entrance for the case r = 1. List the characteristics of your subroutine, as in (4).

MAXIMUM ENT1 1
MAXMOD STJ 9F

JMP 2F
1H CMPA X,3

JGE 3F
2H ENT2 0,3

LDA X,3
3H DEC3 0,1

J3P 1B
9H JMP *

Calling sequences: JMP MAXIMUM if r = 1, or JMP MAXMOD.
Entry conditions: rI3 = n; for MAXMOD, rI1 = r; n, r ≥ 1.

Exit conditions: rA = max
⌊(n−1)/r⌋
k=1 CONTENTS(X+ n− kr) = CONTENTS(X+ rI2);

rI3 ≤ 0.


x 7. [20 ] Why is self-modifying code now frowned upon?

Modern computers have separate instruction and data caches for efficiency, and typically
several instructions are being processed at once, so modifying one of these instructions
means emptying the instruction cache and pipeline, severely degrading performance.

These computers also support a security measure that works by preventing pieces of
code intended to be executed from being written to, in order to avoid attackers executing
code by overriding some buffer due to a bug in the application, and self-modifying code
would need to have that protection disabled.

Third, typically these computers are running several processes or threads which may
share code, and if the code is self-modifying we would need to keep several copies of it,
which wastes memory.

Finally, self-modifying code is difficult to reason about unless it is restricted to a
few well known patterns, but these patterns can be easily replaced by constructions like
stacks which do not suffer from the problems above and allow techniques like recursion.
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1.4.2 Coroutines

1. [10 ] Explain why short, simple examples of coroutines are hard for the author of a
textbook to find.
Coroutines appear when there are several parts of the program coordinating among
them, where each part performs a higher level task. While simple coroutines appear in
higher level languages such as Python (in the form of generators), in languages such as
assembly where they is no builtin support for them, they are more complex and slower
than equivalent code that doesn’t use coroutines, so their utility is not evident from
these simple cases.

x 2. [20 ] The program in the text starts up the OUT coroutine first. What would happen
if IN were the first to be executed—that is, if line 60 where changed from ‘JMP OUT1’
to ‘JMP IN1’?
The first parsed character would be ignored, since the OUT coroutine doesn’t expect a
character to be loaded already when it begins. Here IN acts effectively like a generator
for OUT.

x 6. [22 ] Give coroutine linkage analogous to (1) for the case of three coroutines, A, B,
and C, each of which can jump to either of the other two. (Whenever a coroutine is
activated, it begins where it last left off.)
In principle, this would require us to extend the code to six coroutine linkages, like
below:

BTOA STJ BX
JMP AX

CTOA STJ CX
AX JMP A1

ATOB STJ AX
JMP BX

CTOB STJ CX
BX JMP B1

ATOC STJ AX
JMP CX

BTOC STJ BX
JMP C1

We can then elide the code for jumps that never happen. When the number
of coroutines is large, typically each one only communicates with the next or they
communicate with a central, coordinating coroutine that decides which to call next
based on some protocol (maybe coroutines store the index of the next coroutine to
run in some register, or coroutines are polled in order based on which has input data
available, for example.)

1.4.3 Interpretive Routines

1.4.3.1 A MIX simulator

x 3. [22 ] Write the MOVE routine, which is missing from the program in the text
(operation code 7).
The following is not tested.

MOVE J3Z CYCLE
ENTA 0,3 ; Calculate time
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INCA 1,3
STA TIME (0:2)
LD1 A1REG ; Load destination position
LDA SIGN1 ; Check positive sign
JAP 1H
J1NZ MEMERROR
STZ SIGN1 (0:0)

1H J3Z CYCLE ; Check loop variable
CMP1 =BEGIN= ; Check destination
JGE MEMERROR
CMP5 =BEGIN= ; Check source
JGE MEMERROR
LDA 0,5 ; Move value
STA 0,1
DEC3 1 ; Next iteration
INC1 1
INC5 1
ST1 I1REG
JMP 1B

x 5. [24 ] Determine the time required to simulate the LDA and ENTA operators, compared
with the actual time for MIX to execute these operators directly.
It takes 2 cycles to run an LDA instruction and 1 cycle to run an ENTA instruction.
However, it takes 95 cycles to simulate LDA, plus 5 if the sign is not included in the fields
to load, and 52 to simulate ENTA, plus 2 if the value to load is not zero, and we also
have to add 15 cycles to both if the index field is nonzero. This more or less matches
the solution but I’m not spending any more effort on counting cycles.

1.4.3.2 Trace Routines

3. [10 ] The previous exercise suggests having the trace program write its output onto
tape. Discuss why this would be preferable to printing it directly.
The output of the tracer would be large, and so it would need to be analyzed by another
program in order to focus on interesting parts or gather some statistics.

x 4. [25 ] What would happen if the trace routine were tracing itself ? Specifically,
consider the behavior if the two instructions ENTX LEAVEX; JMP *+1 were placed just
before ENTER.
Unfortunately this wouldn’t work, as the registers A and J of the tracing tracing
program and the traced traced program would be stored in the same addresses.

x 7. [25 ] Discuss how to write an efficient jump trace routine, which emits much less
output than a normal trace. Instead of displaying the register contents, a jump trace
simply records the jumps that occur. It outputs a sequence of pairs (x1, y1), (x2, y2), . . . ,
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meaning that the program jumped from location x1 to y1, then (after performing the
instructions in locations y1, y1 + 1, . . . , x2) it jumped from x2 to y2, etc.

We could save this information right at the JUMP label. At this point, PREG contains
the current instruction and INST1 contains the instruction to jump to, so it should be
easy to move those to values to a buffer and call a subroutine to write to tape when the
buffer is full.

If the code wasn’t self-modifying, we could just scan up to the next jump instruction,
modify that one, and run up to that point, and the solution from the book specifies just
that except that it allows STJ to modify jump calls by handling this case separately
during the scan. Since modern processors can raise an exception when modifying their
own code (W^X), it should be possible to save all the jump calls in some table and
substitute them by calls to a debugger routine before running, accepting that the
program may detect that it’s being debugged by looking at its own jump calls.

1.4.4 Input and Output

1. [05 ]

1. Would sequence (3) still be correct if the MOVE instructions were placed before the
JBUS instruction instead of after it?

2. What if the MOVE instructions were placed after the IN command?

1. No, because they would be reading the old data.

2. No, because the new data would overwrite the old data while we are reading it.
It would probably turn out okay since the new data is probably being read at a
slower pace than the MOVE instructions, but it’s not wise to bet on it.

2. [10 ] The instructions ‘OUT 1000(6); JBUS *(6)’ may be used to output a tape
block in an unbuffered fashion, just as the instructions (1) did this for input. Give a
method analogous to (2) and (3) that buffers this output, by using MOVE instructions
and an auxiliary buffer in locations 2000–2099.

Every time a new block of data is ready in locations 1000–1099, we want to clear it to
allow other operations to write on it and write it to tape in the meantime, making sure
that the previous block has finished writing before that. Therefore we could just run
the following after each block is ready:

ENT1 2000
JBUS *(6)
MOVE 1000(50)
MOVE 1050(50)
OUT 2000(6)
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x 3. [22 ] Write a buffer-swapping output subroutine analogous to (4). The subroutine,
called WORDOUT, should store the word in rA as the next word of output, and if a buffer
is full it should write 100 words onto tape unit V. Index register 5 should be used to
refer to the current buffer position. Show the layout of buffer areas and explain what
instructions (if any) are necessary at the beginning and end of the program to ensure
that the first and last blocks are properly written. The final block should be filled out
with zeros if necessary.
The following code is not tested.

WORDOUT STJ 1F
STA 0,5
INC5 1

2H LDA 0,5
DECA SENTINEL

1H JAZ *
OUT -100,5(V)
LD5 1,5
JMP 2B

OUTBUF1 ORIG *+100
CON SENTINEL
CON OUTBUF2

OUTBUF2 ORIG *+100
CON SENTINEL
CON OUTBUF1

At the start of the program, we would need to ENT5 OUTBUF1. At the end, we have
to fill the current block with zeroes and write it unless we are at the beginning of the
block so we have already written what we had to, and then we had to wait for the
remaining write to complete. We can do this with the following code:

DEC5 OUTBUF1
J5Z 9H
DEC5 102
J5Z 9H

1H STZ 0,5
INC5 1
LDA 0,5
DECA SENTINEL
JANZ 1B
OUT -100,5(U)

9H JBUS *(5)

Knuth’s version is 2 words shorter and very slightly faster by comparing addresses
rather than contents in a couple places.

4. [M20 ] Show that if a program refers to a single I/O device, we might be able to
cut the running time in half by buffering the I/O, in favorable circumstances; but we
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can never decrease the running time by more than a factor of two, with respect to the
time taken by unbuffered I/O.

See the next exercise.

x 5. [M21 ] Generalize the situation of the preceding exercise to the case when the
program refers to n I/O devices instead of just one.

Let’s assume that reads and writes on devices are so slow that the time taken for the
CPU to run the I/O operations is negligible. Let’s also assume that the time it takes
for the CPU to complete an iteration of the program is the same time that it takes
for each device to read or write a block, that this time is the same for all devices, and
that each iteration reads or writes a block on each device at the beginning which is
only needed by the next iteration, if at all. Moreover, we assume that there are enough
iterations so that the time needed for initialization and finalization is negligible.

Then the unbuffered case takes MN(n + 1) cycles, where M is the number of
iterations and N is the number of cycles per iteration, while the buffered case takes
MN , so in this optimal case, the time is divided by n+ 1.

On the other hand, if we have a general program where the CPU takes N0 cycles
and the kth device takes Nk cycles for k = 1, . . . , n, then the unbuffered version takes
N0 +N1 + · · ·+Nn cycles and the buffered version takes at least max{N0, . . . , Nn} ≥
N0+···+Nn

n+1 cycles, so we cannot go lower than this limit.

x 9. [21 ] A program that leads to the buffer contents shown in figure 1.3 may be
characterized by the following list of times:

A, 1000, R, 1000, A, 1000, R, 1000, A, 1000, R, 1000, A, 1000, R, 1000,

A, 1000, R, 5000, A, 7000, R, 5000, A, 7000, R, 5000, A, 7000, R, 5000,

A, 1000, R, 1000, A, 2000, R, 1000.

This list means “assign, compute for 1000 u, release, compute for 1000 u, assign, ...,
compute for 2000 u, release, compute for 1000 u.” The computation times given do not
include any intervals during which the computer might have to wait for the output
device to catch up (as at the fourth “assign” in figure 1.3). The output device operates
at a speed of 7500 u per block.
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Figure 1.3: Output with two buffers (exercise 9).

The following chart specifies he actions shown in figure 1.3 as the time passes:
Time Action

0 ASSIGN(BUF1)
1000 RELEASE, OUT BUF1
2000 ASSIGN(BUF2)
3000 RELEASE
4000 ASSIGN(BUF3)
5000 RELEASE
6000 ASSIGN (wait)
8500 BUF1 assigned, OUT BUF2
9500 RELEASE

10500 ASSIGN (wait)
16000 BUF2 assigned, OUT BUF3
23000 RELEASE
23500 OUT BUF1
28000 ASSIGN(BUF3)
31000 OUT BUF2
35000 RELEASE

Time Action
38500 OUT BUF3
40000 ASSIGN(BUF1)
46000 Output stops.
47000 RELEASE, OUT BUF1
52000 ASSIGN(BUF2)
54500 Output stops.
59000 RELEASE, OUT BUF2
64000 ASSIGN(BUF3)
65000 RELEASE
66000 ASSIGN(BUF1)
66500 OUT BUF3
68000 RELEASE
69000 Computation stops.
74000 OUT BUF1
81500 Output stops.

The total time required was therefore 81500 u; the computer was idle from 6000–8500,
10500–16000, and 69000–81500, or 20500 u altogether; the output unit was idle from
0–1000, 46000–47000, and 54500–59000, or 6500 u.

Make a time-action chart like the above for the same program, assuming that there
are only two buffers.
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Figure 1.4: Output with three buffers (see exercise 9).

We can do this graphically as shown in figure 1.4, giving us the following chart:
Time Action

0 ASSIGN(BUF1)
1000 RELEASE, OUT BUF1
2000 ASSIGN(BUF2)
3000 RELEASE
4000 ASSIGN (wait)
8500 BUF1 assigned, OUT BUF2
9500 RELEASE

10500 ASSIGN (wait)
16000 BUF2 assigned, OUT BUF1
17000 RELEASE
18000 ASSIGN (wait)
23500 BUF1 assigned, OUT BUF2
30500 RELEASE
31000 OUT BUF1
35500 ASSIGN(BUF2)
38500 Output stops.

Time Action
42500 RELEASE, OUT BUF2
47500 ASSIGN(BUF1)
50000 Output stops.
54500 RELEASE, OUT BUF1
59500 ASSIGN(BUF2)
62000 Output stops.
65500 RELEASE, OUT BUF2
71500 ASSIGN(BUF1)
72500 RELEASE
73500 ASSIGN (wait)
74000 BUF2 assigned, OUT BUF1
76000 RELEASE
77000 Computation stops.
81500 OUT BUF2
89000 Output stops.

x 14. [20 ] Suppose the computational program does not alternate between ASSIGN and
RELEASE, but instead gives the sequence of actions ...ASSIGN...ASSIGN...RELEASE...RELEASE.
What effect does this have on the algorithms described in the text? Is it possibly useful?
It just means we would need at least two buffers or the program would stall. It might
be useful if the algorithm needs more data at a time than what fits in one buffer, so
that it doesn’t have to copy the data elsewhere.
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x 15. [22 ] Write a complete MIX program that copies 100 blocks from tape unit 0 to
tape unit 1, using just three buffers. The program should be as fast as possible.
The following programs have not been tested. We need to use the buffers in a circle,
checking input and output in a loop to see if the devices are ready and if we can move
to the next buffer. The following program in pseudo-C might be illustrative:

void aread(char *buf), awrite(char *buf); // IN , OUT
bool done_read(), done_write (); // JBUS/JRED
char buf [3][100];
char *cin = buf[0], *cout = buf[0], *next(char *buf);
int n = 100; // Remaining blocks to input

aread(cin);
while (1) {

if (done_read () && next(cin) != cout) {
if (--n == 0)

break;
cin = next(cin);
aread(cin);

}
}
if (done_write () && next(cout) != cin) {

cout = next(cout);
awrite(cout);

}
}
do // Output remaining blocks

awrite(cout = next(cout ));
while (cout != cin);

We may translate this as follows:

IN BUF1 (0)
ENTA 100
ENT1 BUF1 ; cin
ENT2 BUF1 ; cout

READ JBUS WRITE (0)
CMP2 100,1
JEQ WRITE
DECA 1
JAZ EOUT
LD1 100,1
IN 0 ,1(0)

WRITE JBUS READ (1)
CMP1 100,2
JEQ READ
LD2 100,2
OUT 0 ,2(1)
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JMP READ
EOUT LD2 100,2

CMP2 100,1
JAZ END
OUT 0 ,2(1)
JMP EOUT

END HLT
BUF1 ORIG *+100

CON BUF2
BUF2 ORIG *+100

CON BUF3
BUF3 ORIG *+100

CON BUF1

Now, the behavior of this program is always the same: first the input advances,
then the output advances, and so on, so we might do better (and with a lower chance
of bugs) just by coding it manually and using the blocking properties of IN and OUT
with respect to other operations in the same device:

IN BUF1 (0)
LOOP ENTA 33

IN BUF2 (0)
OUT BUF1 (1)
IN BUF3 (0)
OUT BUF2 (1)
IN BUF1 (0)
OUT BUF3 (1)
DECA 1
JANZ LOOP
JBUS *(0)
OUT BUF1 (1)
JBUS *(1)
HLT

BUF1 ORIG *+100
BUF2 ORIG *+100
BUF3 ORIG *+100
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1.5 MMIX

1.5.1 Description of MMIX

1.5.2 The MMIX Assembly Language

1.6 Some Fundamental Programming Techniques (MMIX)

1.6.1 Subroutines

1.6.2 Coroutines

1.6.3 Interpretive Routines
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Chapter 2

Information structures

2.1 Introduction

1. [04 ] In the situation depicted in (3), what is the value of

1. SUIT(NEXT(TOP));

2. NEXT(NEXT(NEXT(TOP)))?

1. 4.

2. Λ.

2. [10 ] The text points out that in many cases CONTENTS(LOC(V)) = V. Under what
conditions do we have LOC(CONTENTS(V)) = V?

V must be a valid memory address different from Λ.

x 5. [21 ] Give an algorithm that essentially undoes the effect of exercise 4: Assuming
that the pile is not empty and that its bottom card is face down, your algorithm should
remove the bottom card and make NEWCARD link to it. (This algorithm is sometimes
called “cheating” in solitaire games.)

1. If NEXT(TOP) = Λ, let NEWCARD← TOP, TOP← Λ and terminate.

2. X← TOP, Y← NEXT(TOP).

3. If NEXT(Y) ̸= Λ, let X← Y, Y← NEXT(Y) and repeat this step.

4. Set NEWCARD← Y and NEXT(X)← Λ.
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6. [06 ] In the playing card example, suppose that CARD is the name of a variable
whose value is an entire node as in (6). The operation CARD← NODE(TOP) sets the fields
of CARD respectively equal to those of the top of the pile. After this operation, which of
the following notations stands for the suit of the top card?

1. SUIT(CARD);

2. SUIT(LOC(CARD));

3. SUIT(CONTENTS(CARD));

4. SUIT(TOP)?

2 and 4.

x 7. [04 ] In the text’s example MIX program, (5), the link variable TOP is stored in the
MIX computer word whose assembly language name is TOP. Given the field structure (1),
which of the following sequences of code brings the quantity NEXT(TOP) into register
A? Explain why the other sequence is incorrect.

1. LDA TOP(NEXT)

2. LD1 TOP
LDA 0,1(NEXT)

2, since the first loads the field NEXT from the memory word TOP, that only contains
the address, instead of from the node that TOP points to.

x 8. [18 ] Write a MIX program corresponding to steps B1–B3.

NEXT EQU 4:5
LLEN STJ CHECK

ENTA 0 ; B1
ENT1 TOP

2H J1Z * ; B2
INCA 1 ; B3
LD1 0,1(NEXT)
JMP 2B

2.2 Linear lists

2.2.1 Stacks, Queues, and Deques
1. [06 ] An input-restricted deque is a linear list in which items may be inserted at

one end but removed from either end; clearly an input-restricted deque can operate
either as a stack or as a queue, if we consistently remove all items from one of the two
ends. Can an output-restricted deque also be operated either as a stack or as a queue?
Yes. If output happens on the left, we can use a deque as a queue by inserting on the
right or as a stack by inserting on the left.
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x 2. [15 ] Imagine four railroad cars positioned on the input side of the track in Fig. 1,
numbered 1, 2, 3, and 4, from left to right. Suppose we perform the following sequence
of operations (which is compatible with the direction of the arrows in the diagram and
does not require cars to “jump over” other cars): (i) move car 1 into the stack; (ii) move
car 2 into the stack; (iii) move car 2 into the output; (iv) move car 3 into the stack; (v)
move car 4 into the stack; (vi) move car 4 into the output; (vii) move car 3 into the
output; (viii) move car 1 into the output.

As a result of these operations the original order of the cars, 1 2 3 4, has been changed
into 2 4 3 1. It is the purpose of this exercise and the following exercises to examine
what permutations are obtainable in such a manner from stacks, queues, or deques.

If there are six railroad cars numbered 1 2 3 4 5 6, can they be permuted into the
order 3 2 5 6 4 1? Can they be permuted into the order 1 5 4 6 2 3? (In case it is possible,
show how to do it.)
For 3 2 5 6 4 1, we push 1, push 2, push 3, pop 3, pop 2, push 4, push 5, pop 5, push 6,
pop 6, pop 4, and pop 1. We can’t get the permutation 1 5 4 6 2 3: first, we’d need to
push 1 and pop it immediately since, otherwise, it couldn’t be the first car to go out;
then we need to push trains 2 to 5 without popping anything before the 5, so that no
car is between the 1 and the 5, but then we must pop 3 before popping 2, so the order
wouldn’t be respected.

x 5. [M28 ] Show that it is possible to obtain a permutation p1 p2 . . . pn from 1 2 . . . n
using a stack if and only if there are no indices i < j < k such that pj < pk < pi.

=⇒ ] Assume, by contradiction, that there are such indexes. When the next element to
pop is pi, pi is either at the top of the stack or in the input road. In the second
case, the only valid option is to push all elements from the input until reaching pi
and then pop pi, so in either case, pj and pk end up in the stack after popping pi.
Then pk has to remain in the stack until the next element is pk, and in particular
it has to remain after popping pj , but since higher elements in the stack have
higher values (this is easily proved by induction on the size of the stack), pk is
over pj and thus it must be popped before popping pj , giving an incorrect order
to the output.

⇐= ] Let’s consider the following algorithm for generating such permutation: we set
m← 1, and for j ← 1 to n, if pj ≥ m, we push elements m to pj , pop pj and set
m← pj + 1, and otherwise we just pop pj . In this algorithm, m represents the
next element to be pushed and j is such that pj is to be popped, so j ≤ m at the
beginning of every iteration. Thus, if pj ≥ m, the car is still in the input road
and we have to push elements m to pj , and otherwise pj is in the stack.

We show that, in the latter case, if pj weren’t at the top of the stack, there would
be indices i < j and k > j such that pj < pk < pi. If pj is in the stack but not
as the top element, the latest operations have been pushing m′,m′ + 1, . . . , pi for
some i < j (m′ is the value of m when processing i) and, after that, to popping
pi, pi − 1, . . . , pj + c for some c ∈ {2, . . . , j − i}, since at least pi is popped and at
least pj + 1 is not popped (otherwise, either pj would have been popped too or it
would be at the top).
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Let k be the element such that pk = pj + 1, so that pj < pk < pi. We have i < j
because pi was popped earlier than pj , and we have to show that j < k. If it were
k < j, pk would have already been popped, clearly before i, but then it would be
k < i and, because the value of m when processing k would be m′′ ≤ m′ ≤ pj < pk,
we’d have pushed pj when processing k, not when processing i#. Since k ̸= j, we
conclude that j < k.

6. [00 ] Consider the problem of exercise 2, with a queue substituted for a stack. What
permutations of 1 2 . . . n can be obtained with use of a queue?
Just one; a queue would be represented by a bare straight line.

x 7. [25 ] Consider the problem of exercise 2, with a deque substituted for a stack.

1. Find a permutation of 1 2 3 4 that can be obtained with an input-restricted deque,
but it cannot be obtained with an output-restricted deque.

2. Find a permutation of 1 2 3 4 that can be obtained with an output-restricted deque
but not with an input-restricted deque. [As a consequence of (1) and (2), there is
definitely a difference between input-restricted and output-restricted deques.]

3. Find a permutation of 1 2 3 4 that cannot be obtained with either an input-
restricted or an output-restricted deque.

1. 4 1 3 2 (input all from the right, output 4 right, 1 left, 3 right, then 2). With an
output-restricted deque, to output the 4, we’d first have to put 1, 2, and 3 in the
deque and (here lies the difference) in the order of the permutation. But, after
inserting the 1, we’d have to insert the 2 at the right and then we’d have no place
for the 3.

2. 4 2 1 3 (input 1 wherever, 2 left, 3 right, 4 left, then output all to the left). With
an input-restricted deque, to output the 4, we’d first have to put 1, 2, and 3 in
the deque and (here lies the difference) in the order of the input. Then we’d have
to output 2, which is just between 1 and 3.

3. 4 2 3 1. With an input-restricted deque, to output the 4, we’d have to input 1,
2, 3 first, but then we’d have to output the 2 which lies in the middle. With an
output-restricted deque, we’d have to input 1, 2, 3 first in the order 2, 3, 1, so
we’d have to put the 2 to the left of the 1 but then we couldn’t place the 3 in the
middle.

x 14. [26 ] Suppose you are allowed to use only stacks as data structures. How can you
implement a queue efficiently with two stacks?
Let A and B be two stacks (elements go from the top of A to the bottom and from the
bottom of B to the top). To enqueue an element, we push it to A (we could push it
to B if B is empty). To deque an element, if B is empty, we do x ⇐ A,B ⇐ x until
A is empty; if B is still empty, the queue is empty, and otherwise we pop the element
from B. The time needed to copy n elements from A to B is generally amortized as we
won’t need to copy for the following n deletions.
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2.2.2 Sequential Allocation
x 1. [15 ] In the queue operations given by (6a) and (7a), how many items can be in
the queue at one time without OVERFLOW occurring?
M− 1, since R and F range between 1 and M and R = F is used to signal an empty queue.
Since only the relative value of the two indexes matters, this leaves us with a number
of elements between 0 and M− 1.

x 2. [22 ] Generalize the method of (6a) and (7a) so that it will apply to any deque with
fewer than M elements. In other words, give specifications for the other two operations,
“delete from rear” and “insert at front.”

Y ↢ X (delete from rear):

 if F = R, then UNDERFLOW;
Y← X[R];
if R = 1, then R← M, otherwise R← R− 1.

(2.1)

X ↢ Y (insert at front):

 X[F]← Y;
if F = 1, then F← M, otherwise F← F− 1.
if F = R, then OVERFLOW;

(2.2)

6. [10 ] Starting with the memory configuration shown in Fig. 4, determine which of
the following sequences of operations causes overflow or underflow:

1. I1;

2. I2;

3. I3;

4. I4I4I4I4I4;

5. D2D2I2I2I2.

Only 1, 2, and 4 are valid; 3 causes an overflow and 5 causes an underflow in the second
instruction.

x 19. [16 ] (0-origin indexing.) Experienced programmers learn that it is generally wise
to denote the elements of a linear list by X[0], X[1], ..., X[n− 1], instead of using the
more traditional notation X[1], X[2], ..., X[n]. Then, for example, the base address L0 in
(1) points to the smallest cell of the array.

Revise the insertion and deletion methods (2a), (3a), (6a), and (7a) for stacks and
queues so that they conform to this convention. In other words, change them so that
the list elements will appear in the array X[0], X[1], ..., X[M− 1], instead of X[1], X[2], ...,
X[M].
For the stack, since we want T to be non-negative, we have to consider T = 0 to represent
an empty stack, so T still ranges from 0 to M but now T represents one past the top
element. For the queue, we don’t need much adaptation.
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X⇐ Y (insert into stack):

 if T = M, then OVERFLOW;
X[T]← Y;
T← T+ 1.

(2.3)

Y⇐ X (delete from stack):

 if T = 0, then UNDERFLOW;
T← T− 1;
Y← X[T].

(2.4)

X⇐ Y (insert into queue):

 R← (R+ 1) mod M;
if R = F, then OVERFLOW;
X[R]← Y.

(2.5)

Y⇐ X (delete from queue):

 if F = R, then UNDERFLOW;
F← (F+ 1) mod M;
Y← X[F].

(2.6)

2.2.3 Linked Allocation
x 1. [10 ] Operation (9) for popping up a stack mentions the possibility of UNDERFLOW;
why doesn’t operation (8), pushing down a stack, mention the possibility of OVERFLOW?
Because you can allocate anywhere so this possibility doesn’t exist unless you run out
of memory, a condition already handled by P⇐ AVAIL.

x 5. [24 ] Operations (14) and (17) give the effect of a queue; show how to define the
further operation “insert at front” so as to obtain all the actions of an output-restricted
deque. How could the operation “delete from rear” be defined (so that we would have a
general deque)?
Inserting at front can be handled with operation (8), just like with a stack. Deleting
from rear is more difficult. One could use doubly linked lists, which are covered in
section 2.2.5. Alternatively, if we do not want to change the structure, we have to
iterate from the front, with a pointer called I:

If F = Λ, then UNDERFLOW;
Y← INFO(R), P←LOC(F);
while LINK(P) ̸= R repeat P← LINK(P);
AVAIL⇐ R, R← P, LINK(P)← Λ.

x 7. [23 ] Design an algorithm to “invert” a linked linear list such as (1), that is, to
change its links so that the items appear in the opposite order. [If, for example, the list
(1) were inverted, we would have FIRST linking to the node containing item 5; that node
would link to the one containing item 4; etc.] Assume that the nodes have the form (3).
We use auxiliary pointers P, C, and N.

1. Set P← Λ and C← FIRST.

2. If C ̸= Λ, set N← LINK(C), LINK(C)← P, P← C, C← N, and repeat.

3. FIRST← P.
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x 11. [24 ] The result of topological sorting is not always completely determined,
since there may be several ways to arrange the nodes and to satisfy the conditions of
topological order. Find all possible ways to arrange the nodes of Fig. 6 into topological
order.
First we draw it in a way that simplifies reasoning, with all arrows pointing downwards
or to the right:

1 ---> 3 ---> 7 ---> 4
| |
v |

9 ---> 5 |
| | |
v v v
2 ---> 8 ---> 6

Then we explore possibilities by following the idea in algorithm T but backtracking.
We suppress the arrows for compactness.

137492586 137495286 137924586 137925486 137925846 137942586
137945286 137952486 137952846 137954286 139274586 139275486
139275846 139724586 139725486 139725846 139742586 139745286
139752486 139752846 139754286 192374586 192375486 192375846
193274586 193275486 193275846 193724586 193725486 193725846
193742586 193745286 193752486 193752846 193754286 912374586
912375486 912375846 913274586 913275486 913275846 913724586
913725486 913725846 913742586 913745286 913752486 913752846
913754286 921374586 921375486 921375846

x 17. [21 ] What output does Algorithm T produce if it is presented with the input
(18)?
We follow the algorithm with the following table:

0 1 2 3 4 5 6 7 8 9
QLINK/COUNT 1 9 7 2 5 8 0 4 6 3

TOP 3. 8. 7. 6. 8. Λ 4, 5. 6. 5, 2.
N: 0 F: 0 R: 6 P: Λ

To get the output 1→ 9→ 3→ 2→ 7→ 4→ 5→ 8→ 6(→ 0).

x 20. [24 ] Algorithm T uses F, R, and the QLINK table to obtain the effect of a queue
that contains those nodes whose COUNT field has become zero but whose successor
relations have not yet been removed. Could a stack be used for this purpose instead of
a queue? If so, compare the resulting algorithm with Algorithm T.
Yes, because those are nodes that we can already print next after the ones that we have
already printed. The differences would be:

1. In T4, we would do T← 0 and, for each 1 ≤ k ≤ n with COUNT[k] = 0, QLINK[k]←
T and T← k.
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2. In T5, we would output the value of T rather than F, and instead of P← TOP[F]
we would do P ← TOP[T]. We would do T ← QLINK[T] right after T5 instead of
doing T7.

3. In T6, the two assignments involving R would instead be QLINK[SUC(P)]← T and
T← SUC(P).

Then we wouldn’t need QLINK[0]. With input (18), this would work as follows:
1 2 3 4 5 6 7 8 9

QLINK/COUNT 0 1 0 0 4 0 0 4 1
TOP 3. 8. 7. 6. 8. Λ 4, 5. 6. 5, 2.

N: 0 T: 0 P: Λ

Output: 9→ 2→ 1→ 3→ 7→ 5→ 8→ 4→ 6(→ 0).

x 29. [21 ]

1. Give an algorithm to “erase” an entire list like (1), by putting all of its nodes on
the AVAIL stack, given only the value of FIRST. The algorithm should operate as
fast as possible.

2. Repeat part 1 for a list like (12), given the values of F and R.

1. If FIRST = Λ, we don’t have to do anything. Otherwise, let P ← FIRST, if
LINK(P) ̸= ∅ then P ← LINK(P) and repeat, finally set LINK(P) ← AVAIL and
AVAIL← FIRST.

2. Just set LINK(R)← AVAIL and AVAIL← F. This works even if the queue is empty.

2.2.4 Circular Lists
x 3. [20 ] What does operation (3) do if PTR1 and PTR2 are both pointing to nodes in
the same circular list?
It splits the list into two parts; the one that goes from the right of PTR1 to PTR2 is
preserved but the other one becomes a memory leak. If the two pointers are equal,
nothing happens, just PTR2 is set to Λ.

x 5. [21 ] Design an algorithm that takes a circular list such as (1) and reverses the
direction of all the arrows.
This is similar to exercise 2.2.3.7.

1. Set P← Λ and C← PTR.

2. If C ̸= Λ, set N← LINK(C), LINK(C)← P, P← C, C← N, and repeat.

7. [10 ] Why is it useful to assume that the ABC fields of a polynomial list appear in
decreasing order?
Many operations on polynomials require us to match monomials with equal exponents
of the variables. By having a total order on them it’s easy to match these in linear time.
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x 8. [10 ] Why is it useful to have Q1 trailing one step behind Q in Algorithm A?
We need Q to advance in order to check if the next monomial has greater, lower, or
equal coefficient than the one pointed to by P, and if it’s lower, we need Q1 to insert
the one pointed to by P right before the one pointed to by Q.

x 9. [23 ] Would Algorithm A work properly if P = Q (i.e., both pointer variables point
at the same polynomial)? Would Algorithm M work properly if P = M, if P = Q, or if
M = Q?
Algorithm A would work properly, doubling the polynomial being pointed to (this is
assuming no coefficient is 0). As for Algorithm M, it would work for P = M since they’re
not mutated. If P = Q it wouldn’t work, because if M has more than one monomial then
the addition of P times the second monomial or later (the second iteration of step M2)
would add the wrong value to Q. If M = Q it wouldn’t work either as, for example, if
initially M = Q = 1 and P = −1, then addition in the first iteration of M2 would free the
current monomial pointed to by M and in the next iteration of M1, M would point to free
memory with unpredictable consequences. In cases where the constant coefficient of P
is not −1, it amazingly works, as writes to Q are always behind where we read from M
when considering monomials of P with positive degree and, for the constant coefficient,
it writes to the same position where M is but only to the COEF field—unless P is −1 in
which case the node pointed to by M is freed.

x 10. [20 ] The algorithms in this section assume that we are using three variables x,
y, and z in the polynomials, and that their exponents individually never exceed b− 1
(where b is the byte size in MIX’s case). Suppose instead that we want to do addition
and multiplication of polynomials in only one variable, x, and to let its exponent take
on values up to b3 − 1. What changes should be made to Algorithms A and M?
None, as they work out of the box if we consider the ABC field to hold a single coefficient.
The sums and comparisons made on this field in the algorithms are equally valid
independently of which of the two interpretations we want to give to this field, assuming
no overflow.

x 17. [22 ] What advantage is there in representing polynomials with a circular list as
in this section, instead of with a straight linear linked list terminated by Λ as in the
previous section?
Steps A2 and A5 don’t need special cases to handle the end of a list, only A3 does.
Other than that there’s not much of a difference.

x 18. [25 ] Devise a way to represent circular lists inside a computer in such a way that
the list can be traversed efficiently in both directions, yet only one link field is used per
node.
If the link field combines the location of the next and previous fields with some monoidal
operation like XOR, and we have an item xi, then knowing the location of xi+1 allows
us to get the location of xi−1 and vice versa, so knowing the location of two consecutive
items allows us to traverse the list in both directions.
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2.2.5 Doubly Linked Lists

x 2. [22 ] Explain why a list that is singly linked cannot allow efficient operation as a
general deque; the deletion of items can be done efficiently at only one end of a singly
linked list.

One could, in fact, implement it reasonably efficiently using the trick from Exercise
2.2.4.18. If we assume a normal linked list, however, deletion of an element requires
knowing the link to the previous element. We know this for the head of the list, as we
just have to change the pointer to the head, but we do not know it for the tail, and
if we cached a pointer to the second-to-last element to do this, then we would need
to update this pointer to point to the new second-to-last element, whose address we
cannot retrieve efficiently.

x 3. [22 ] The elevator system described in the text uses three call variables, CALLUP,
CALLCAR, and CALLDOWN, for each floor, representing buttons that have been pushed by
the users in the system. It is conceivable that the elevator actually needs only one or
two binary variables for the call buttons on each floor, instead of three. Explain how
an experimenter could push buttons in a certain sequence with this elevator system to
prove that there are three independent binary variables for each floor (except the top
and bottom floors).

We need an experiment that proves that, for any given floor that is not the top or
bottom one, the elevator behaves differently for each of the 8 possible combinations of
the 3 buttons.

Let us denote the states by the values of CALLUP, CALLCAR and CALLDOWN in sequence,
so for example only CALLUP would be 100 and all buttons at once would be 111.

We first note that the three buttons are not completely independent: 101 and 111 are
equal, because the elevator would stop in both directions and then one of CALLUP and
CALLDOWN is cleared at the same time as CALLCAR is, so there’s no observable difference,
but this state and all others are pairwise different, as we shall see.

000 is trivially different from all the other states since, if the elevator is in another
floor, any other combination would take it to our floor. If the elevator is in the lower
floor and we call 001 in the current and above floors, it would go to the floor above
and then to the current one, the opposite of what would happen if in the current floor
we would call any combination involving CALLUP or CALLCAR. The opposite experiment
(calling 100 in the current and below floors with the elevator in the one above, and then
changing what we call in the current floor) shows that 100 is also different from all the
others.

To see that 010 and 101 are different, we press CALLCAR in the current floor with
the elevator in the one above and, while it’s going down, press CALLUP in the floor
below and tell it to go two floors up. Our design wouldn’t stop in our floor when going
up, but it would if we had pressed both CALLUP and CALLDOWN since CALLUP would
still be 1 after stopping when going down. Actually, this shows that 010 and 011 are
different from 101, 110, and 111, and the opposite experiment shows that 010 and 110
are different from 101, 011, and 111.
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x 11. [21 ] (A sparse-update memory.) The following problem often arises in synchronous
simulations: The system has n variables V[1], . . . , V[n], and at every simulated step new
values for some of them are calculated from the old values. These calculations are
assumed to be done “simultaneously” in the sense that the variables do not change to
their new values until after all assignments have been made. Thus, the two statements

V[1]← V[2] and V[2]← V[1]

appearing at the same simulated time would interchange the values of V[1] and V[2];
this is quite different from what would happen in a sequential calculation.

The desired action can of course be simulated by keeping an additional table
NEWV[1], . . . , NEWV[n]. Before each simulated step, we could set NEWV[k] ← V[k] for
1 ≤ k ≤ n, then record all changes of V[k] in NEWV[k], and finally, after the step we
could set V[k]← NEWV[k], 1 ≤ k ≤ n. But this “brute force” approach is not completely
satisfactory, for the following reasons:

1. Often n is very large, but the number of variables changed per step is rather
small.

2. The variables are often not arranged in a nice table V[1], . . . , V[n], but are scattered
throughout memory in a rather chaotic fashion.

3. This method does not detect the situation (usually an error in the model) when
one variable is given two values in the same simulated stop.

4. Assuming that the number of variables changed per step is rather small, design an
efficient algorithm that simulates the desired actions, using two auxiliary tables
NEWV[k] and LINK[k], 1 ≤ k ≤ n. If possible, your algorithm should give an error
stop if the same variables is being given two different values in the same step.

The idea, of course, would be to make a linked list with the LINK table. If we assume
the table is initially set to 0, we could use −1 to signify the end of the linked list.

1. [Initialize.] (This step only happens at the beginning of the simulation.) Set
LINK[k]← 0, 1 ≤ k ≤ n, Q← −1.

2. [Advance time.] Advance to the next step of the synchronous simulation.

3. [Run the current state.] For each calculation that needs to be done, if k is the
variable to be updated, raise an error if LINK[k] ̸= 0, calculate the new value,
store it in NEWV[k], set LINK[k]← Q and Q← k.

4. [Update variables.] If Q > 0, set V[Q] ← NEWV[Q], Q2 ← LINK[Q], LINK[Q] ← 0,
Q← LINK[Q], and repeat this step. Otherwise go to 2.

x 12. [22 ] Why is it a good idea to use doubly linked lists instead of singly linked or
sequential lists in the simulation program of this section?
This is because we often delete nodes from the middle of the list without knowing the
predecessor or successor, like an user who was tired of waiting, and doubly linked lists
are the only kind that allows doing this efficiently.
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2.2.6 Arrays and Orthogonal Lists
x . [21 ] Formulas (5) and (6) have been derived from the assumption that 0 ≤ Ir ≤ dr
for 1 ≤ r ≤ k. Give a general formula that applies to the case lr ≤ Ir ≤ ur, where lr
and ur are any lower and upper bounds on the dimensionality.

LOC(A[I1, I2, . . . , Ik]) = LOC(A[l1, l2, . . . , lk]) +
∑

1≤r≤k

ar(Ir − lr) =

=

LOC(A[l1, l2, . . . , lk])−
∑

1≤r≤k

arlr

+
∑

1≤r≤k

arIr,

where
ar = c

∏
r<s≤k

(us − ls + 1).

x 6. [24 ] Consider the “tetrahedral arrays” A[i,j,k],B[i,j,k], where 0 ≤ k ≤ j ≤ i ≤ n
in A, and 0 ≤ i ≤ j ≤ k ≤ n in B. Suppose that both of these arrays are stored
in consecutive memory locations in lexicographic order of the indices; show that
LOC(A[I, J, K]) = a0 + f1(I) + f2(J) + f3(K) for certain functions f1, f2, f3. Can
LOC(B[I, J, K]) be expressed in a similar manner?
Let c be the size of an entry, a0 := LOC(A[0,0,0]), and x(i, j, k) be the number of positions
from a0 to LOC(A[i,j,k]), so that LOC(A[i,j,k]) = a0 + cx(i, j, k), then

x(i, j, k) = x(i, 0, 0) + (x(i, j, 0)− x(i, 0, 0)) + (x(i, j, k)− x(i, j, 0)),

but

x(i, j, k)− x(i, j, 0) = k,

x(i, j, 0)− x(i, 0, 0) =

j−1∑
p=0

(x(i, p+ 1, 0)− x(i, p, 0)) =

j−1∑
p=0

(p+ 1) =

j∑
p=1

p =
j(j + 1)

2
,

and x(i, 0, 0) is already a function of i, so in fact locations can be put in this form.
Now let b0 := LOC(B[0,0,0]) and y(i, j, k) := LOC(B[0,0,0])−LOC(B[i,j,k])

c , the functions, if
they exist, would depend on n, since y(0, 1, 1) = y(0, 0, n) + 1 = n+ 1, but still

y(i, j, k) = y(i, n, n) + (y(i, j, n)− y(i, n, n)) + (y(i, j, k)− y(i, j, n))

with

y(i, j, k)− y(i, j, n) = n− k,

y(i, j, n)− y(i, n, n) =

n∑
p=j+1

(y(i, p− 1, n)− y(i, p, n)) =

n∑
p=j+1

(1 + y(i, p, p)− y(i, p, n))

=

n∑
p=j+1

(n− p+ 1) =

n−p∑
p=1

p,

and y(i, n, n) is already a function of i (and n).
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x 12. [20 ] What are VAL(Q0), VAL(P0), and VAL(P1) at the beginning of step S7, in
terms of the notation a, b, c, d used in (13)?
VAL(P1) = d, VAL(Q0) = c, VAL(P0) = b/a.

x 13. [22 ] Why were circular lists used in Fig. 14 instead of straight linear lists? Could
Algorithm S be rewritten so that it does not make use of the circular linkage?
Circular lists are used as an optimization and simplification: since many lists have to
be traversed many times, it is advantageous to not have to reset the pointer to the list
every time as the pointer is already situated at the beginning of the list by the time the
previous iteration ends.

x 24. [25 ] (The sparse array trick.) Suppose you want to use a large array for random
access, although you won’t actually be referring to very many of its entries. You want
A[k] to be zero the first time you access it, yet you don’t want to spend the time to
set every location to zero. Explain how it is possible to read and write any desired
elements A[k] reliably, given k, without assuming anything about the actual initial
memory contents, by doing only a small fixed number of additional operations per array
access.
One could have an auxiliary array L containing pairs of index and value, and have A
contain pointers to L. If the pointer is within bounds and L contains the index k in
that position, then the value contained is the value of A[k], otherwise the value is 0. L
could actually be the size of A but have an upper limit n with the number of elements
actually allocated, which is considered the upper bound and which increases whenever
a value that has not been yet allocated is written to.

2.3 Trees
4. [01 ] True or false: In a conventional tree diagram (root at the top), if node X has

a higher level number than node Y , then node X appears lower in the diagram than
node Y .
True.

5. [02 ] If node A has three siblings and B is the parent of A, what is the degree of B?
4.

x 6. [21 ] Define the statement “X is an mth cousin of Y , n times removed” as a
meaningful relation between nodes X and Y of a tree, by analogy with family trees, if
m > 0 and n ≥ 0. (See a dictionary for the meaning of these terms in regard to family
trees.)
It means that there exists a node X ′ such that either X is the nth ancestor of X ′ or
vice versa (that is, the ancestor n levels below, where for n = 0 we would take X ′ = X),
X ′ and Y are at the same level, the (m+ 1)th ancestor of X ′ and Y is the same, and
the mth ancestor isn’t.
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x 8. [03 ] What binary tree is not a tree?
By the definitions in this book, the empty binary tree. Actually binary trees and trees
are very separate concepts and therefore none is.

9. [00 ] In the two binary trees of (1), which node is the root (B or A)?
By the current conventions, A.

13. [10 ] Suppose that node X is numbered a1.a2. · · · .ak in the Dewey decimal system;
what are the Dewey numbers of the nodes in the path from X to the root (see exercise
3)?
They would be a1.a2. · · · .ak; a1.a2. · · · .ak−1; . . . ; a1.a2; a1.

x 15. [20 ] Invent a notation for the nodes of binary trees, analogous to the Dewey
decimal notation for nodes of trees.
We could call the root % and, for a given nonempty node called λ (a string), its left
child could be called λL and its right child λR.

17. [01 ] If Z stands for Fig. 19 regarded as a forest, what node is parent(Z[1, 2, 2])?
parent(Z[1, 2, 2]) = parent(children of node 1.2.2) = E.

18. [08 ] In List (3), what is L[5, 1, 1]? What is L[3, 1]?
L[5, 1, 1] = (2), L[3, 1] doesn’t exist.

x 20. [M21 ] Define a 0-2-tree as a tree in which each node has exactly zero or two
children. (Formally, a 0-2-tree consists of a single node, called its root, plus 0 or 2
disjoint 0-2-trees.) Show that every 0-2-tree has an odd number of nodes; and give a
one-to-one correspondence between binary trees with n nodes and (ordered) 0-2-trees
with 2n+ 1 nodes.
We can prove that 0-2-trees have an odd number of nodes by induction on the depth of
the tree: for depth 0, we just have one node with no children, and for depth greater
than 0, we have the root and two children whose subtrees have each an odd number of
nodes, so the main tree also has an odd number of nodes.

For the bijection, an empty binary tree corresponds to a node with 0 children, and
any other binary tree corresponds to a node whose children are the left and right nodes.
This is clearly bijective, and we can prove that the bijection sends binary trees with n
nodes to ordered 0-2-trees with 2n+1 nodes by induction on n. For n = 0, this is obvious;
for n > 0, let m be the number of nodes in the left subtree, clearly 0 ≤ m < n and the
right subtree has n−m− 1 nodes, 0 < n−m− 1 ≤ n, so by the induction hypothesis
on the subtrees the corresponding 0-2-tree has 1 + (2m+ 1) + (2(n −m − 1) + 1) =
1 + 2m+ 1 + 2n− 2m− 2 + 1 = 2n+ 1 nodes.
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x 22. [21 ] Standard European paper sizes A0, A1, A2, ..., An, ... are rectangles whose
sides are in the ratio

√
2 to 1 and whose areas are 2−n square meters. Therefore if we

cut a sheet of An paper in half, we get two sheets of A(n+ 1) paper. Use this principle
to design a graphic representation of binary trees, and illustrate your idea by drawing
the representation of 2.3.1–(1) below.
One idea would be to represent an empty binary tree as nothing and a nonempty binary
tree as dividing the sheet in two by a line parallel to the short side, interrupted by the
label of the root node, and then draw the left and right subtrees in the left/top and
right/bottom sides of the paper. In fact, one might not even need to draw the whole
line, drawing only the line from the label of the parent node (or from the top of the
sheet for the root) to the own label is enough and would probably be clearer.

AB

D

C

EG

FH J

2.3.1 Traversing Binary Trees

1. [01 ] In the binary tree (2), let INFO(P) denote the letter stored in NODE(P). What
is INFO(LLINK(RLINK(RLINK(T))))?
H.

x 4. [20 ] The text defines three basic orders for traversing a binary tree; another
alternative would be to proceed in three steps as follows:

1. Visit the root,

2. traverse the right subtree,

3. traverse the left subtree,

using the same rule recursively on all nonempty subtrees. Does this new order bear any
simple relation to the three orders already discussed?
Yes, this is the same as postorder but backwards.
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x 10. [20 ] What is the largest number of entries that can be in the stack at once,
during the execution of Algorithm T, if the binary tree has n nodes? (The answer
to this question is very important for storage allocation, if the stack is being stored
consecutively.)

There can be up to n nodes in the stack, in the case that all the right links are null and
the tree is just a linked list using the RLINK.

x 13. [24 ] Design an algorithm analogous to Algorithm T that traverses a binary tree
in preorder, and prove that your algorithm is correct.

1. [Initialize.] Set stack A empty, and set the link variable P← T.

2. [P = Λ?] If P = Λ, go to step 4.

3. [Visit P.] Visit NODE(P). Do A⇐ RLINK(P), P← LLINK(P), and return to step 2.

4. [Visit right hand side.] If A is empty, the algorithm terminates. Otherwise set
P⇐ A and return to step 2.

We now prove by induction on the number of nodes that, if we start in step 2, we
traverse the subtree starting at P in preorder, leave the stack unchanged, and proceed
to step 4, which clearly would show that the algorithm is correct.

For an empty tree, this is obvious. For a tree with n nodes, that we start with the
root is obvious, we do that at step 3 with the stack empty. After that step, setting
P← LLINK(P) and returning to step 2 means that we get to step 4 after traversing the
left subtree, which by the induction hypothesis would leave us on step 4 with the stack
like it was before but adding the node RLINK(P). Then step 4 clearly means to traverse
RLINK(P) and leave A like it was before starting processing P.

x 16. [22 ] The diagrams in Fig. 24 help to provide an intuitive characterization of the
position of NODE(Q$) in a binary tree, in terms of the structure near NODE(Q): If NODE(Q)
has a nonempty right subtree, consider Q = $P, Q$ = P in the upper diagrams; NODE(Q$)
is the “leftmost” node of that right subtree. If NODE(Q) has an empty right subtree,
consider Q = P in the lower diagrams; NODE(Q$) is located by proceeding upward in the
tree until after the first upward step to the right.

Give a similar “intuitive” rule for finding the position of NODE(Q ∗ ) in a binary tree
in terms of the structure near NODE(Q).

If NODE(Q) has a nonempty left subtree, consider Q = ∗P in the upper diagrams; then
Q∗ = P is the left child of Q. Otherwise, if NODE(Q) has a nonempty right subtree, Q∗ is
the right child of Q. Otherwise both subtrees are empty and Q∗ can be found by going
upward until finding a node that is a left child (which could be Q itself) and taking its
right sibling.
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x 17. [22 ] Give an algorithm analogous to Algorithm S for determining P∗ in a threaded
binary tree. Assume that the tree has a list head as in (8), (9), and (10).

If P points to a node of a threaded binary tree, this algorithm sets Q← P∗.

1. [Is the left subtree nonempty?] If LTAG(P) = 1, set Q← LLINK(P) and terminate
the algorithm.

2. [Search to the right.] Set Q← RLINK(P). If RTAG(P) = 1, terminate the algorithm.
Otherwise set P← Q and repeat this step.

28. [00 ] After Algorithm C has been used to make a copy of a tree, is the new binary
tree equivalent to the original, or similar to it?

It’s equivalent (and similar).

x 30. [22 ] Design an algorithm that threads an unthreaded tree; for example, it should
transform (2) into (10). Note: Always use notations like P∗ and P$ when possible,
instead of repeating the steps for traversal algorithms like Algorithm T.

This algorithm threads an unthreaded tree T. The fields LTAG and RTAG in the nodes of
T are considered to initially contain arbitrary values that we do not need to preserve.

1. [Initialize list head and variables.] Get P⇐ AVAIL and set LTAG(P)← RTAG(P)← 0,
LLINK(P) ← T, RLINK(P) ← P, T ← P, and Q ← P$. (We’ll use Q as a pointer to
the node being considered and P and R as pointers to the next and previous nodes,
respectively. We only ever compute the next node in inorder from the last node
calculated this way, which makes it trivial to use algorithm T as a coroutine.)

2. [Are we over?] If RLINK(Q) = Q, the algorithm terminates. (This loop only happens
in the list head.)

3. [Step.] Set R ← Q$. If LLINK(Q) = Λ, set LTAG(Q) ← 0 and LLINK(Q) ← P,
otherwise set LTAG(Q) ← 1. Similarly, if RLINK(Q) = Λ, set RTAG(Q) ← 0 and
RLINK(Q)← R, otherwise set RTAG(Q)← 1. Finally set P← Q, Q← R, and return
to step 2.

x 37. [24 ] (D. Ferguson.) If two computer words are necessary to contain two link fields
and an INFO field, representation (2) requires 2n words of memory for a tree with n
nodes. Design a representation scheme for binary trees that uses less space, assuming
that one link and an INFO field will fit in a single computer word.

If we allow for a second null value (call it λ, which could be e.g. a pointer to a
specific word in the program code or to a sentinel constant, or 4001 in MIX, or
1 in MMIX), then we could implement the solution in the book, which is that, if
LINK(P) = Λ, then LLINK(P) = RLINK(P) = Λ, and otherwise LLINK(P) = LINK(P)
and RLINK(P) = LINK(P) + 1 (or +sizeof(int)), except that if LINK(LINK(P)) = λ or
LINK(LINK(P) + 1) = λ then LLINK(P) or RLINK(P) is respectively Λ.
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2.3.2 Binary Tree Representation of Trees

x 1. [20 ] The text gives a formal definition of B(F ), the binary tree corresponding to
a forest F . Give a formal definition that reverses the process; in other words, define
F (B), the forest corresponding to a binary tree B.
F (B) is the forest such that B(F (B)) = B, so F = B−1. Now we shall give an explicit
definition of F and see that B and F are, in fact, inverses.

Given a binary tree B:

1. If B is empty, F (B) is the empty forest.

2. Otherwise, let root(P ) be the root node of a given nonempty binary tree, left(P )
be its left subtree, and right(P ) be its right subtree. Then, if T1 is the tree whose
root is root(T ) and whose children are the trees of the forest F (left(B)), then
F (B) = (T1, F (right(B))), that is, the forest made up of the tree T1 followed by
the trees in F (right(B)).

We can prove that they are inverses by structural induction, which is a case of strong
induction in the number of nodes.

B(F (B)) = B is obvious if B is empty; otherwise F (B) = ((root(B);F (left(B)));F (right(B)))
is made up of a tree T1 with root(B) as root and the trees in F (left(B)) as children, and
then the trees in F (right(B)), and so B(F (B)) has root(T1) = root(B) as its root, its left
subtree is B(F (left(B))) = left(B), and its right subtree is B(F (right(B))) = right(B).

F (B(F )) = F is obvious for an empty forest F ; if F = (T1, . . . , Tn) is nonempty, then
B(F ) has root(T1) as its root, B(T11, . . . , T1m) as its left subtree, where T11, . . . , T1m

are the subtrees of T1, and B(T2, . . . , Tn) as the right subtree, so F (B(F )) is made up
of a tree T ′

1 whose root is root(B(F )) = root(T1) and whose children are the trees in
F (left(B(F ))) = F (B(T11, . . . , T1m)) = (T11, . . . , T1m) (therefore T ′

1 = T1), followed by
the trees in F (right(B)) = F (B(T2, . . . , Tn)) = (T2, . . . , Tn).

x 2. [20 ] We defined Dewey decimal notation for forests in Section 2.3, and for binary
trees in exercise 2.3.1–5. Thus the node “J” in (1) is represented by “2.2.1”, and in the
equivalent binary tree (3) it is represented by “11010” (this is a 1 for the root following
by zero or more 0s or 1s, where 0 means moving to the left subtree and 1 means moving
to the right). If possible, give a rule that directly expresses the natural correspondence
between the Dewey decimal notations.
One can get the forest notation from the binary tree notation by switching the 1 at
the start by a 0 and then counting the number of 1s after each 0 and adding 1 to that
number. In this case, we would change “11010” to “01010”, then count “1.1.0” and add 1
to each number to get “2.2.1”.

x 13. [26 ] Write a MIX program for the COPY subroutine (which fits in the program of
the text between lines 063–104).
We have 40 lines. We use Algorithm 2.3.1C to copy the tree in rI1. In C5, to take the
next node in preorder, we follow the RLINK up to and including that of a node with
RTAG = 0 (positive sign), unless the node has a left child. In C4, when inserting a node
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to the left, we set RTAG = 1 and RLINK to the parent node, In C2, when inserting a
node to the right, we set RTAG = 1 and RLINK to the previous RLINK of the parent node.

We also need to copy the INFO of the HEAD, which is easily achieved by going from
C1 to C3 rather than to C4. This code is slightly less efficient than the one by Knuth,
and it has not been tested.

ST2 1F
ST3 2F
JMP ALLOC ; C1 [Initialize]
ENT2 0,3
ST2 0,2(RLINK) ; RLINK(U) <- U

3H LDA 1,1 ; C3 [Copy INFO]
STA 1,2
LDA 0,1(TYPE)
STA 0,2(TYPE)

4H LDA 0,1(LLINK) ; C4 [Anything to the left?]
JAZ 5F
JMP ALLOC ; R <= AVAIL
ST3 0,2(LLINK) ; LLINK(Q) <- R
ENNA 0,2
STA 0,3( RLINKT)
LD1 0,1(LLINK)
ENT2 0,3

5H LD1N 0,1( RLINKT) ; C5 [Advance]
LD2 0,2(RLINK)
J1P 5B
ENN1 0,1

6H CMP2 0,2(RLINK) ; C6 [Test if complete]
JEQ 2F ; Finish when Q = RLINK(Q)
LDA 0,1 ; C2 [Anything to the right ?]
JAN 3B
JMP ALLOC ; R <= AVAIL
LDA 0,2( RLINKT) ; RLINK(Q) <- R
STA 0,3( RLINKT)
ST3 0,2( RLINKT)
JMP 3B

ALLOC STJ 8F
LD3 AVAIL
J3Z OVERFLOW
LDX 0,3(LLINK)
STX AVAIL
STZ 0,3(LLINK)
JMP *

2H ENT3 *
ENT1 0,2

1H ENT2 *
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x 14. [M21 ] How long does it take the program of exercise 13 to copy a tree with n
nodes?
There are 20 cycles for the initialization, then 11 for every node including the header
until JAZ 5F, then 21 for each left node, plus 5 to go back in C5 if needed (once for each
left node or for the header), plus 1 to arrive at the right node (including the header),
then 2 cycles per node (including the header at the end) to test for termination, 20 for
each right node, and 3 for termination.

In total, we spend 63 cycles, plus 39 cycles for each left child and 34 for each right
child. As said before, this is just slightly less efficient than Knuth’s code.

x 18. [25 ] An oriented tree specified by n links PARENT[j] for 1 ≤ j ≤ n implicitly
defines an ordered tree if the nodes in each family are oriented by their location. Design
an efficient algorithm that constructs a doubly linked circular list containing the nodes
of this ordered tree in preorder. For example, given

j = 1 2 3 4 5 6 7 8
PARENT[j] = 3 8 4 0 4 8 3 4

your algorithm should produce

LLINK[j] = 3 8 4 6 7 2 1 5
RLINK[j] = 7 6 1 3 8 4 5 2

and it should also report that the root node is 4.
The way to do this would be to look at the indices in decreasing order, and for each
index we insert the child node and its subtree to the right of the parent node, as follows:

1. [Initialize.] Set LLINK[j]← RLINK[j]← j for 1 ≤ j ≤ n, then let j ← n.

2. [Set parent.] If PARENT[j] = 0, set r ← j. Otherwise set p ← PARENT[j],
LLINK[RLINK[p]] ← LLINK[j], RLINK[LLINK[j]] ← RLINK[p], RLINK[p] ← j, and
LLINK[j]← p.

3. [Are we done?] Decrease j by 1. If j = 0, terminate and report r as the root node.
Otherwise go to step 2

First, each element is in a circular list by its own. Then, in step 2, we place the circular
list of the child to the right of the circular list of the parent. To see that this produces
a preorder, we see by induction that, at the end of step 2, we have the preorder of each
connected component in the “subforest” whose edges are (k, PARENT[k]) for j ≤ k ≤ n,
each preorder in a separate circular list.

For j = n, this is easy to check. For 1 ≤ j < n, at the beginning of the step, j
will not be connected with PARENT[j] in the graph, so all the nodes in its connected
component will be descendants of j, and j will be the root of a subtree. Thus connecting
j as the leftmost child of PARENT[j] would affect the preorder of the subtree PARENT[j]
is in by adding the preorder of the child’s subtree precisely to the right of its parent.

Furthermore, since we add children from right to left, the order of the subtrees is
always preserved.
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x 20. [M22 ] Prove that if u and v are nodes of a forest, u is a proper ancestor of v if
and only if u precedes v in preorder and u follows v in postorder.

=⇒ ] Trivial.

⇐= ] Certainly u cannot be a descendant of v. If u and v were in different tree, their
relative ordering would be decided by the order of those trees, not by whether we
use preorder or postorder. Similarly, if r is the closest common ancestor of u and
v and r ̸= u, let u1 be the child of r whose subtree contains u and v1 that whose
subtree contains v, then u1 ̸= v1, but u1 and v1 and therefore u and v would
always have the same order if the tree is ordered.

2.3.3 Other Representations of Trees
x 1. [20 ] If we had only LTAG, INFO and RTAG fields (not LLINK) in a level order
sequential representation like (8), would it be possible to reconstruct the LLINKs? (In
other words, are the LLINKs redundant in (8), as the RLINKs are in (3)?)
Yes, although the traversal might be less efficient. First, we would have to collect the
roots of the trees to form the first level. These roots are precisely the first family, that
is, the first sequence of nodes up to an including one with RTAG = 1. We count the
number of such nodes that have children, which are the ones with LTAG = 0. For the
second level, we take as many families as nodes with children in the first level. Each of
those families corresponds to the children of one of those nodes, in order. For the third
level, we take as many families as nodes with children in the second level, and so on.

x 3. [24 ] Modify Algorithm 2.3.2D so that it follows the ideas of Algorithm F, placing
the derivatives it computes as intermediate results on a stack, instead of recording their
locations in an anomalous fashion as is done in step D3. (See exercise 2.3.2–21.) The
stack may be maintained by using the RLINK field in the root of each derivative.

1. [Initalize.] Set P← Y$.

2. [Differentiate.] Set d ← DEGREE(P). If d = 0, set ARGS ← 0, otherwise set
t← RLINKd−1(LLINK(DY)), DY← RLINK(t), and RLINK(t)← Λ. Then perform the
routine DIFF[TYPE(P)]. (This routine uses P and ARGS as its arguments and it is
in change of freeing the nodes of ARGS that will not be part of the result, which it
should store in Q.)

3. [Save link.] Set RLINK(Q)← LLINK(DY), LLINK(DY)← Q, and P← P$.

4. [Done?] If P = Y, terminate. Otherwise go back to step 2.

x 6. [24 ] Suppose that the nodes of an oriented forest have three link fields, PARENT,
LCHILD, and RLINK, but only the PARENT link has been set up to indicate the tree
structure. The LCHILD field of each node is Λ and the RLINK fields are set as a linear list
that simply links the nodes together in some order. The link variable FIRST points to
the first node, and the last node has RLINK = Λ. Design an algorithm that goes through
these nodes and fills in the LCHILD and RLINK fields compatible with the PARENT links,
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so that a triply linked tree representation like that in Fig. 26 is obtained. Also, reset
FIRST so that it now points to the root of the first tree in the representation.

1. [Initialize.] Set C← FIRST and FIRST← Λ (we haven’t found any root yet).

2. [Done?] If C = Λ, terminate.

3. [Add child.] Set p ← PARENT(C) and N ← RLINK(C). If p = Λ, set RLINK(C) ←
FIRST and FIRST← C, otherwise set RLINK(C)← FCHILD(p) and FCHILD(p)← C.
(In assembly we might just set p to some function of LOC(FIRST) whenever p = Λ.)

4. [Advance.] Set C← N and go to the previous step.

x 11. [24 ] (Equivalence declarations.) Several compiler languages, notably FORTRAN,
provide a facility for overlapping the memory locations assigned to sequentially stored
tables. The programmer gives the compiler a set of relations of the form X[j] ≡ Y[k],
which means that variable X[j + s] is to be assigned to the same location as variable
Y[k + s] for all s. Each variable is also given a range of allowable subscripts: “ARRAY
X[l : u]” means that space is to be set aside in memory for the table entries X[l],
X[l+1], ..., X[u]. For each equivalence class of variables, the compiler reserves as small
a block of consecutive memory locations as possible, to contain all the table entries for
the allowable subscript values of these variables.

For example, suppose we have ARRAY X[0 : 10], ARRAY Y[3 : 10], ARRAY A[1 : 1],
and ARRAY Z[−2 : 0], plus the equivalences X[7] ≡ Y[3], Z[0] ≡ A[0], and Y[1] ≡ A[8]. We
must set aside 20 consecutive locations

Z−2 Z−1 Z0 A1

X0 X1 X2 X3 X4 X5 X6 X7

Y3

X8

Y4

X9

Y5

X10

Y6 Y7 Y8 Y9 Y10

for these variables. (The location following A[1] is not an allowable subscript value for
any of the arrays, but it must be reserved anyway.)

The object of this exercise is to modify Algorithm E so that it applies to the more
general situation just described. Assume that we are writing a compiler for such a
language, and the tables inside our compiler program itself have one node for each array,
containing the fields NAME, PARENT, DELTA, LBD, and UBD. Assume that the compiler
program has previously processed all the ARRAY declarations, so that if ARRAY X[l : u]
has appeared and if P points to the node for X, then

NAME(P) = “X”, PARENT(P) = Λ, DELTA(P) = 0,

LBD(P) = l, UBD(P) = u.

The problem is to design an algorithm that processes the equivalence declarations, so
that, after this algorithm has been performed,

PARENT(P) = Λ means that locations X[LBD(P)], ..., X[UBD(P)] are to be re-
served in memory for this equivalence class;

PARENT(P) = Q ̸= Λ means that location X[k] equals location Y[k+DELTA(P)],
where NAME(Q) = “Y”.
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For example, before the equivalences listed above we might have the nodes
P NAME(P) PARENT(P) DELTA(P) LBD(P) UBD(P)
α X Λ 0 0 10
β Y Λ 0 3 10
γ A Λ 0 1 1
δ Z Λ 0 −2 0

After the equivalences are processed, the nodes might appear thus:
α X Λ ∗ −5 14
β Y α 4 ∗ ∗
γ A δ 0 ∗ ∗
δ Z α −3 ∗ ∗

(“∗” denotes irrelevant information.)
Design an algorithm that makes this transformation. Assume that inputs to your

algorithm have the form (P, j, Q, k), denoting X[j] ≡ Y[k], where NAME(P) = “X” and
NAME(Q) = “Y”. Be sure to check whether the equivalences are contradictory; for
example, X[1] ≡ Y[2] contradicts X[2] ≡ Y[1].

1. [Read input.] Read a line (P, j, Q, k), but if there are no more lines, terminate the
algorithm.

2. [Find roots.] If PARENT(P) ̸= Λ, set j ← j + DELTA(P), P← PARENT(P), and repeat
this step. If PARENT(Q) ≠ Λ, set k ← k + DELTA(Q), Q ← PARENT(Q), and repeat
this step.

3. [Merge trees.] If P ̸= Q, set PARENT(P) ← Q DELTA(P) ← k − j, LBD(Q) ←
min{LBD(Q), LBD(P)+DELTA(P)}, UBD(Q)← max{UBD(Q), UBD(P)+DELTA(P)}. Oth-
erwise, if j ̸= k, notify a contradiction and terminate the algorithm. Finally go to
step 1.

x 17. [25 ] Algorithm F evaluates a “bottom-up” locally defined function, namely, one
that should be evaluated at the children of a node before it is evaluated at the node. A
“top-down” locally defined function f is one in which the value of f at a node x depends
only on x and the value of f at the parent of x. Using an auxiliary stack, design an
algorithm analogous to Algorithm F that evaluates a “top-down” function f at each
node of a tree. (Like Algorithm F, your algorithm should work efficiently on trees that
have been stored in postorder with degrees, as in (9).)

1. [Initialize.] Set the stack to the single element (∞,Λ), and let P point to the last
ode of the forest in post-order.

2. [Evaluate f .] Let (d, v) be the value at the top of the stack. Evaluate f(NODE(P), v)
and save the result as VALUE(P). Then push (DEGREE(P), VALUE(P)) to the stack.

3. [Update the stack.] Pop the element (p, v) from the stack. If p = 0, repeat this
step. Otherwise push (p− 1, v) into the stack.

4. [Advance.] If P is the first node in postorder, terminate the algorithm. Otherwise
set P to its predecessor in postorder and return to step 2.
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2.3.4 Basic Mathematical Properties of Trees
2.3.4.1 Free trees

x 4. [M20 ] Let G′ be a finite free tree in which arrows have been drawn on its edges
e1, . . . , en−1; let E1, . . . , En−1 be numbers satisfying Kirchhoff’s law (1) in G′. Show
that E1 = · · · = En−1 = 0.
We prove this by induction on n. For n = 1 it is trivial. For n > 1, there always exists
a node of degree 1 (in an oriented tree, this would be a leaf). Let er be the only edge
connected to that node, clearly Er = 0, so removing er leaves us with an isolated node
and a free tree of degree 0 which follows Kirchhoff’s law and has n− 1 nodes, but then
by the induction hypothesis all the other Ek are also 0.

x 8. [M25 ] When applying Kirchhoff’s first law to program flow charts, we usually
are interested only in the vertex flows (the number of times each box of the flow chart
is performed), not the edge flows analyzed in the text. For example, in the graph of
exercise 7, the vertex flows are A = E2 +E4, B = E5, C = E3 +E7 +E8, D = E6 +E9.

If we group some vertices together, treating them as one “supervertex,” we can
combine edge flows that correspond to the same vertex flow. For example, edges e2 and
e4 can be combined in the flow chart above if we also put B with D:

Start A B,D C Stop
e1

e2 + e4

e5

e7

e8

e9
e6

e3

e0

(Here e0 has also been added from Stop to Start, as in the text.) Continuing this
procedure, we can combine e3 + e7, then (e3 + e7)+ e8, then e6 + e9, until we obtain the
reduced flow chart having edges s = e1, a = e2+ e4, b = e5, c = e3+ e7+ e8, d = e6+ e9,
t = e0, precisely one edge for each vertex in the original flow chart:

Start A,B,D, Stop C
s

t

b

c

a

d

By construction, Kirchhoff’s law holds in this reduced flow chart. The new edge
flows are the vertex flows of the original; hence the analysis in the text, applied to the
reduced flow chart, shows how the original vertex flows depend on each other.

Prove that this reduction process can be reversed, in the sense that any set of flows
{a, b, . . . } satisfying Kirchhoff’s law in the reduced flow chart can be “split up” into a set
of edge flows {e0, e1, . . . } in the original flow chart. These flows ej satisfy Kirchhoff’s
law and combine to yield the given flows {a, b, . . . }; some of them might, however, be
negative. (Although the reduction procedure has been illustrated for only one particular
flow chart, your proof should be valid in general.)
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(I had to look up the solution, this one is difficult.) We only have to show that there
exists an assignment in the original flowchart that produces any given set of flows in
the reduced flowchart.

Since we get from one to the other by reductions, we only have to prove that we
can reverse reductions. In these reductions, there are two arrows e1 from vertex or
supervertex a to b and e2 from a to c, to get an edge f = e1 + e2 from a to b, c, and
reverting means recovering e1 and e2 from f and the other edges.

If b = c, we can just make up e1 and set e2 to f − e1. If a = b ̸= c, then e2 must
be such that Kirchhoff’s law is preserved for c, and we can just set e1 = f − e2. The
situation a = c ̸= b is symmetrical. Finally, if the three nodes are distinct, setting e1
and e2 such that they follow Kirchhoff’s law for b and c makes e1+ e2 follow Kirchhoff’s
law in b, c in the reduced flowchart.

2.3.4.2 Oriented trees

x 4. [M20 ] The concept of topological sorting can be defined for any finite directed
graph G as a linear arrangement of the vertices V1V2 . . . Vn such that init(e) precedes
fin(e) in the ordering for all arcs e of G. (See Section 2.2.3, Figs. 6 and 7.) Not all finite
directed graphs can be topologically sorted; which ones can be? (Use the terminology
of this section to give the answer.)
Only the ones with no directed cycles, except possibly for cycles of length 1. If G has
a cycle (of length 2 or more), the nodes in the cycle cannot be topologically ordered;
otherwise the transitive closure of the edges of the graph is a partial ordering between
the vertices, so they can be topologically ordered.

x 7. [M22 ] True or false: A directed graph satisfying properties (a) and (b) of the
definition of oriented tree, and having no oriented cycles, is an oriented tree.
True for finite graphs. If there were cycles, they would be oriented because no vertex is
the initial vertex of two arcs, and a graph with no cycles and exactly one edge less than
the number of vertices is a free tree. Then the way to orient the edges such that (a)
and (b) follow is unique, which can be proved by induction on the distance of a node to
the root, and we know that this way follows (c).

False for infinite graphs. A graph whose vertices are R, V1, V2, . . . , Vn, . . . and whose
edges are V1 → V2 → V3 → . . . follows (a) and (b) and has no cycles but it doesn’t
follow (c).

x 13. [M24 ] Prove that if R is a root of a (possibly infinite) directed graph G, then
G contains an oriented subtree with the same vertices as G and with root R. (As a
consequence, it is always possible to choose the free subtree in flow charts like Fig. 32
of Section 2.3.4.1 so that it is actually an oriented subtree; this would be the case in
that diagram if we had selected e′′13, e′′19, e20, and e17 instead of e′13, e′19, e23, and e15.)
We prove by induction that there is a family of oriented subtrees {Tn}n≥0 of G with
root R such that Tn contains exactly all the vertices V in G such that there is an
oriented path from V to R of length at most n and, furthermore, Tn−1 ⊆ Tn for every
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n ≥ 1. It is easy to check that the union of this family of trees is a tree with all the
vertices in G.

For n = 0, we just take the trivial oriented tree, which only contains R. For n ≥ 1,
and for every node V such that the shortest oriented path from V to R has length n,
we choose one such path V V1 · · ·Vn−1R, which we can do for all such vertices because
of the axiom of choice. Since V1 is in Tn−1, we just have to add V and the arc (V, V1)
to Tn−1, for all such V .

x 16. [M24 ] In a popular solitaire game called “clock,” the 52 cards of an ordinary deck
of playing cards are dealt face down into 13 piles of four each; 12 piles are arranged
in a circle like the 12 hours of a clock and the thirteenth pile goes in the center. The
solitaire game now proceeds by turning up the top card of the center pile, and then
if its face value is k, by placing it next to the kth pile. (The numbers 1, 2, . . . , 13 are
equivalent to A, 2, . . . , 10, J,Q,K.) Play continues by turning up the top card of the
kth pile and putting it next to its pile, etc., until we reach a point where we cannot
continue since there are no more cards to turn up on the designated pile. (The player
has no choice in the game, since the rules completely specify what to do.) The game is
won if all cards are face up when the play terminates.

Show that the game will be won if and only if the following directed graph is an
oriented tree: The vertices are V1, V2, . . . , V13; the arcs are e1, e2, . . . , e12, where ej goes
from Vj to Vk if k is the bottom card in pile j after the deal.

(In particular, if the bottom card of pile j is a “j”, for j ̸= 13, it is easy to see that
the game is certainly lost, since this card could never be turned up. The result proved
in this exercise gives a much faster way to play the game!)

First we note that this graph already follows conditions (a) and (b) of the definition
of an oriented tree, so it will be a tree if an only if V13 is a root, if and only if there
are no cycles (see Exercise 7). We also note that, since there are only 4 cards of each
denomination, and we only take a card from a pile when we find its denomination except
from one from V13 at the start of the game, the only case where we cannot continue is
after finding the last card with face value K.

=⇒ ] Assume that the game is not an oriented tree, then there is a cycle Vk1 · · ·Vkm .
We can assume that the k1th pile is the first whose bottom card we turn up.
Since clearly k1 ̸= 13, this means that we had already turned up all cards with
denomination k1, but we had not turned up km#.

⇐= ] Assume we lost the game, which means that we have turned up all the cards with
face value 13 and that, furthermore, we have turned up as many cards from the
kth pile as cards with face value k. This means that, if

U := {Vj | the jth pile’s bottom card is down},

then V13 /∈ U and each vertex of U has one outgoing edge that points to another
vertex in U , as we have already turned up all the cards with face value k for
Vk /∈ U . Thus V13 is not a root.
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x 24. [M20 ] Let G be a connected digraph with arcs e0, e1, . . . , em. Let E0, E1, . . . , Em

be a set of positive integers that satisfy Kirchhoff’s law for G; that is, for each vertex V ,∑
init(ej)=V

Ej =
∑

fin(ej)=V

Ej .

Assume further that E0 = 1. Prove that there is an oriented walk in G from init(e0)
such that edge ej appears exactly Ej times, for 1 ≤ j ≤ m, while edge e0 does not
appear.
We apply Theorem G to the graph whose vertices are those of G and whose edges are
the ej repeated Ej times. This is valid, since we could as well place an intermediate
vertex among each edge to avoid repeating edges, and it would give us an Eulerian
cycle in that graph that goes through e0 once. Coalescing the repeated edges into one
gives us back graph G and a cycle though G that goes though edge ej exactly Ej times,
and we just have to remove the only appearance of e0.

2.3.4.3 The “infinity lemma”

x 1. [M10 ] The text refers to a set S containing finite sequences of positive integers,
and states that this set is “essentially an oriented tree.” What is the root of this oriented
tree, and what are the arcs?
The vertices are the elements of S, the root is ∅, and the arcs go from (x1, . . . , xn) to
(x1, . . . , xn−1), for every (x1, . . . , xn) ∈ S \ {∅}.

x 3. [M23 ] If it is possible to tile the upper right quadrant of the plane when given an
infinite set of tetrad types, is it always possible to tile the whole plane?
No. For example, our tiles might be of the form

n

n

n+ 1

n+ 1

for n ∈ N. Then in the (x, y) square we might place the tile with n = max{x, y} and
this would tile the upper right quadrant, but there’s obviously no way to tile the whole
plane.

x 6. [M23 ] (Otto Schreier.) In a famous paper, B. L. van der Waerden proved the
following theorem:

If k and m are positive integers, and if we have k sets S1, . . . , Sk of positive
integers with every positive integer included in at least one of these sets,
then at least of the sets Sj contains an arithmetic progression of length m.

(The latter statement means there exist integers a and δ > 0 such that a+ δ, a+ 2δ, ...,
a+mδ are all in Sj .) If possible, use this result and the infinity lemma to prove the
following stronger statement:
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If k and m are positive integers, there is a number N such that if we have
k sets S1, . . . , Sk of integers with every integer between 1 and N included
in at least one of these sets, then at least one of the sets Sj contains an
arithmetic progression of length m.

It is enough to prove it when the set that contains every integer between 1 and N is
S1. We define a tree whose vertices are the tuples (S1, . . . , Sk) of finite sets of integers
such that, if n = max

⋃k
i=1 Si, every positive integer up to n is in one of the sets, and

such that no set contains an arithmetic progression of length m. The edges go from one
such tuple to (S1 \ {n}, . . . , Sk \ {n}), so the root is (∅, . . . , ∅) and n is the height of
the node in the tree.

Since each vertex contains a finite number of children (2k − 1, corresponding to
the ways of adding the next number to one or more of the sets), it follows that if this
tree were infinite, there would be an infinite path. By van der Waerden theorem, the
component-wise union of this path would give us a tuple (S1, . . . , Sk) such that some
Sj contains an arithmetic progression of length m, so by construction one of the nodes
in the path would follow this condition.#

Thus the tree is finite and we just need to take N as one plus the depth of the tree.

2.3.4.4 Enumeration of trees

x 5. [M25 ] (A. Cayley.) Let cn be the number of (unlabeled) oriented trees having n
leaves (namely, vertices with in-degree zero) and having at least two subtrees at every
other vertex. Thus c3 = 2, by virtue of the two trees

•

• • •

•

• •

• •

Find a formula analogous to (3) for the generating function

C(z) =
∑
n

cnz
n.

Every tree has at least one leaf, so c0 = 0. This includes subtrees, so c1 = 1 as, if the
root weren’t also a leaf, it would have at least two children and therefore two trees. For
n > 1, the root has a tree and various subtrees. Let jk be the number of subtrees with
k leaves, 1 ≤ k < n, for those subtrees we may choose up to(

ck + jk − 1

jk

)
possibilities, since these are combinations with repetition (see exercise 1.2.6–60), so

cn =
∑

j1,...,jn−1≥0
j1+2j2+···+(n−1)jn−1=n

(
c1 + j1 − 1

j1

)
· · ·
(
cn−1 + jn−1 − 1

jn−1

)
.
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Note that this is like (2) except that we have n under the sum instead of n− 1. Thus,
using the same identity as in the derivation of (3),

C(z) = c0 + c1z +
∑
n≥2

∑
j1,...,jn−1≥0

j1+2j2+···+(n−1)jn−1=n

n−1∏
k=1

(
ck + jk − 1

jk

)
zkjk

= z +
∑

(jn)n∈N(N∗)

∏
n≥1

(
cn + jn − 1

jn

)
znjn −

∑
n≥1

cnz
n − 1

=
∏
n≥1

∑
j≥1

(
cn + j − 1

j

)
znjn − C(z) + z − 1

=
1

(1− z)c1(1− z2)c2 · · · (1− zn)cn · · ·
− C(z) + z − 1,

where N(N∗) is the set of sequences of natural numbers starting at j1 and with a finite
amount of nonzero coefficients; the subtracted term

∑
n≥1 cnz

n is there to cancel the
terms which correspond to nodes having just one child, and likewise for −1 for the term
with all zeroes.

Thus,

C(z) =
1

2

∏
n≥1

1

(1− zn)cn
+ z − 1

 .

x 10. [M22 ] Prove that a free tree with n vertices and two centroids consists of two free
trees with n/2 vertices, joined by an edge. Conversely, if two free trees with m vertices
are joined by an edge, we obtain a free tree with 2m vertices and two centroids.

=⇒ ] Let u and v be the two centroids, with weight m. If u had weight m from an
edge that wasn’t the one that leads to v, then v would have weight at least m+1,
owing to the m nodes that stem from that edge in u and u itself.# By a similar
argument, if there were an intermediate node w ̸= u, v in the path connecting u
with v, its weight must necessarily be at most m− 1#. Therefore u and v are the
only centroids, they are connected with an edge and the subtrees that result from
removing that edge have m nodes each.

⇐= ] Let u and v be the two nodes that are newly connected, then u has weight m
because of its connection with v, v has weight m because of its connection with u,
and any other node has weight at least m+ 1 because of their connection to u
and v.

14. [10 ] True or false: The last entry, f(Vn−1), in the canonical representation of an
oriented tree is always the root of that tree.
True. After each removal step, we still have a tree with the same root, and by the end
the tree has no edges and therefore it only has one node, which is the root. Just before
that, it only has one edge, which must connect a direct child of the root to the root.
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x 21. [M20 ] Enumerate the number of labeled oriented trees in which each vertex has
in-degree zero or two. (See exercise 20 and exercise 2.3–20.)
These are precisely the 0-2-trees in exercise 2.3–20. We know 0-2-trees always have an
odd number of nodes, say 2m+ 1 nodes. By the construction in the text, these trees
correspond to sequences of 2m nodes where each node that appears does so exactly twice.
There are

(
2m+1

m

)
ways to choose which nodes do appear in the sequence, and (2m)!

2m

ways to arranging them (we can think of arranging 2m elements and then discarding
the relative order of equal pairs of elements). This gives us(

2m+ 1

m

)
(2m)!

/
2m

labeled oriented 0-2-trees.

2.3.4.5 Path length

x 3. [M24 ] An extended binary tree with m external nodes determines a set of path
lengths l1, l2, . . . , lm that describe the lengths of paths from the root to the respective
external nodes. Conversely, if we are given a set of numbers l1, l2, . . . , lm, is it always
possible to construct an extended binary tree in which these numbers are the path
lengths in some order? Show that this is possible if and only if

∑m
j=1 2

−lj = 1.
We assign each external node an interval of real numbers as follows: start with [l, u) =
[0, 1); then, for each edge in the path from the root to the node, if it’s a left edge, set
[l, u)← [l, l+u

2 ), and if it’s a right edge, set [l, u)← [ l+u
2 , u), so the interval’s length is

2−l, l being the path length. It’s easy to see that these intervals are disjoint and that,
for each x ∈ [0, 1), there is a special node whose interval contains x. With this in mind:

=⇒ ] This is precisely the sum of the lengths of the intervals, which is 1 because [0, 1)
is the disjoint union of these intervals.

⇐= ] We just have to sort the path lengths in increasing order, assign consecutive
intervals of length 2−lk starting from 0 and converting the intervals to paths (more
precisely, to sequences of left/right turns), which we can do since the increasing
order ensures that the starting point lk of an interval [lk, uk) is a multiple of the
length uk − lk. These paths are all different and none is a prefix of another one,
so they define the leaves of a binary tree.

x 4. [M25 ] (E. S. Schwartz and B. Kallick.) Assume that w1 ≤ w2 ≤ · · · ≤ wm. Show
that there is an extended binary tree that minimizes

∑
wj lj and for which the terminal

nodes in left to right order contain the respective values w1, w2, . . . , wm.
Let T be an extended binary tree that minimizes

∑
wj lj . For i < j, if wi < wj , then

li ≥ lj in that tree, as otherwise we could reduce the weight path length by swapping
their positions as

(wilj + wj li)− (wili + wj lj) = (wi − wj)(lj − li) < 0#.

Thus we might assume li ≥ lj for all i < j. This means lengths l1, . . . , lm are in
decreasing order, so the proof in the previous exercise gives us a tree whose nodes, in
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the order of the tree, are wm, . . . , w1 with lengths lm, . . . , l1, and we just have to swap
left and right edges in that tree.

x 12. [M20 ] Suppose that a node has been chosen at random in a binary tree, with
each node equally likely. Show that the average size of the subtree rooted at that node
is related to the path length of the tree.
Let V1, . . . , Vm be the internal nodes, with path lengths l1, . . . , lm. The average size
of the subtrees is the sum of the number of nodes in each subtree divided by m, but
in this sum, each node Vk is counted lk + 1 times, one for the subtree generated by
each node in the path from the root to Vk including both ends of the path. Thus this
average is precisely

1

m

∑
k

(lk + 1) =
1

m
(I +m) =

I

m
+ 1,

where I is the internal path length of the tree.

2.3.4.6 History and bibliography

x 1. [21 ] Find a simple one-to-one correspondence between binary trees with n nodes
and dissections of an (n+ 2)-sided convex polygon into n triangles, assuming that the
sides of the polygon are distinct.
Let v0, . . . , vn+1 be the vertices of the polygon. We start at the root and, if the left
subtree has k nodes (0 ≤ k < n) and the right subtree has n− k− 1 nodes, we take out
the triangle conv{v0, v1, vk+2}. This leaves us with a polygon of k+2 nodes v1, . . . , vk+2

when the left subtree is not empty, and one of n− k + 1 nodes vk+2, . . . , vn+1, v0 when
the right subtree is not empty, and we just have to dissect these two smaller polygons
recursively, for example, by renaming vk+2 to v0 in the polygon for the left subtree and
vk+2, . . . , vn+1 to v1, . . . , vn−k in the polygon for the right subtree.

To get back the original binary tree, we just have to see which other vertex is in the
triangle that contains the edge between v0 and v1, take it out, and then “decode” the
two remaining polygons if they exist, something we can do for arbitrary dissections of
the polygon.

2.3.5 Lists and Garbage Collection

x 1. [M21 ] In Section 2.3.4 we saw that trees are special cases of the “classical”
mathematical concept of a directed graph. Can Lists be described in graph-theoretic
terminology?
Yes, we can consider Lists as ordered trees where, in general, only the leaves have labels.
If we allow Lists to be referenced from multiple places, then we can consider them as
graphs where outgoing arcs from a given node are ordered and such that there is a
distinguished vertex R such that there is at least one path from R to any other vertex.
These Lists can be used to reason about computer memory in higher level programming
languages.
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6. [00 ] The quantitative discussion at the end of this section says that the cost of
garbage collection is approximately c1N+ c2M units of time; where does the “c2M” term
come from?
From scanning the memory in search of nodes to collect.

2.4 Multilinked Structures

1. [00 ] Considering COBOL data configurations as tree structures, are the data items
listed by a COBOL programmer in preorder, postorder, or neither of these orders?
They are in preorder.

2. [10 ] Comment about the running time of Algorithm A.
It takes a constant amount of time for each data item read (assuming that accessing the
symbol table takes constant time). There is also a loop to get out of a nested record,
but each iteration of the loop takes out an item from the stack so we may consider
that as part of processing such item. Therefore the running time is proportional to the
number of data items in the input.

8. [10 ] Under what circumstances is “MOVE CORRESPONDING α TO β” exactly the
same as “MOVE α TO β”, according to the definition in the text?
When α or β is an elementary item.

x 11. [23 ] What additional links or changes in the strategy of the algorithms of the
text could make Algorithm B or Algorithm C faster?
(I had to look up the solution.) One could make Algorithm C faster by storing sibling
nodes in the table in lexicographical order, so step C3 would have a linear rather than
quadratic complexity.

x 13. [24 ] Give an algorithm to substitute for Algorithm A when the Data Table is to
have the format shown in exercise 12.
We remove the instructions that set PARENT, CHILD, SIB, and NAME, as those fields do not
exist now (in particular, A6 disappears), and we implement Q⇐ AVAIL in step A2 by
sequential allocation. We set the SCOPE of an entry when we remove the corresponding
item from the stack in step A5. (Note that we do the same in A5 when L1 = L as when
L1 > L, so we could just do those instructions unconditionally, then after removing the
current stack item and before loading the next one we check if L1 = L and if so we go
to A7, then if L1 ≥ L we repeat, otherwise we report the error.)

For this to work, we have to get the stack empty by the time the algorithm finishes,
which we can do by setting L ← 0 when the input is exhausted in step A2 and then
terminate in step A7 when L = 0.
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2.5 Dynamic Storage Allocation
x 5. [18 ] Suppose it is known that N is always 100 or more in Algorithm A. Would it
be a good idea to set c = 100 in the modified step A4′?
No, because while we cannot use that storage right now, it might be worth it after the
next allocated block gets freed.

x 6. [23 ] (Next fit.) After Algorithm A has been used repeatedly, there will be a strong
tendency for blocks of small SIZE to remain at the front of the AVAIL list, so that it will
often be necessary to search quite far into the list before finding a block of length N or
more. For example, notice how the size of the blocks essentially increases in Fig. 42, for
both reserved and free blocks, from the beginning of memory to the end. (The AVAIL
list used while Fig. 42 was being prepared was kept sorted by the order of location, as
required by Algorithm B.) Can you suggest a way to modify Algorithm A so that

1. short blocks won’t need to accumulate in a particular area, and

2. the AVAIL list may still be kept in order of increasing memory locations, for
purposes of algorithms like Algorithm B?

Yes, we could arrange the free space as a circular list and start each search where the
previous one left off. In more precise terms, in A1 we would change Q← LOC(AVAIL) to
Q ← AVAIL, in A4 we would add AVAIL ← Q, and the test in A2 would be Q = AVAIL

rather than P = Λ and it would be skipped in the first iteration. Other algorithms that
deal with memory management might need to be modified as well to avoid invalidating
AVAIL. For example, algorithm B would have to deal with this when freeing the block
just before it.

7. [10 ] The example (1) shows that first-fit can sometimes be definitely superior to
best-fit. Give a similar example that shows a case where best-fit is superior to first-fit.

memory
request

available areas,
first-fit

available areas,
best-fit

— 1300, 1200 1300, 1200
1100 200, 1200 1300, 100
250 200, 950 1050, 100
1000 stuck 50, 100

x 12. [20 ] Modify Algorithm A so that it follows the boundary-tag conventions (7)–(9),
uses the modified step A4’ described in the text, and also incorporates the improvement
of exercise 6.
Algorithm A’ (Next-fit method with boundary-tag conventions). Let the heap be stored
as in (7)–(9), c be as in step A4’ in the text, and let PTR be a variable whose value
persists among runs of this algorithm and which starts with the value AVAIL. (We could
just get rid of the list head in LOC(AVAIL) and use this Q instead of AVAIL, but let’s
follow convention (9).) For this algorithm N is two more than the number of words we
want to allocate.
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A1. [Initialize.] Set P← PTR.

A2. [Is SIZE enough?] If SIZE(P) ≥ N, go to 2.5.

A3. [End of list?] Set P← LINK(P). If P = PTR, the algorithm terminates unsuccess-
fully; there is no room for a block of N consecutive blocks. Otherwise go back to
2.5.

A4. [Reserve N.] Set K← SIZE(P)−N, but if K < c, set K← 0. Then, set L← P+K and
TAG(L)← TAG(P+ SIZE(P)−1)← “+”. Finally, if K = 0, set LINK(LINK(P+1))←
LINK(P) and LINK(LINK(P) + 1) = LINK(P + 1); otherwise set SIZE(L) ← N,
SIZE(P)← SIZE(L− 1)← K, and TAG(L− 1)← “−”. The result is an allocation
of size SIZE(L)− 2 ≥ N− 2 that spans from L+ 1 to L+ SIZE(L)− 1.

x 15. [24 ] Show how to speed up Algorithm C at the expense of a slightly longer
program, by not changing any more links than absolutely necessary in each of four cases
depending on whether TAG(P0− 1), TAG(P0+ SIZE(P0)) are plus or minus.

1. [Initialize.] Set S← SIZE(P0) and PU← P0+ S.

2. [Check lower bound.] If TAG(P0− 1) = “+”, go to step 5.

3. [Move to lower area.] Set S← S+ SIZE(P0− 1) and P0← P0− SIZE(P0− 1).

4. [Remove upper area.] If TAG(PU) = “−”, set P1← LINK(PU), P2← LINK(PU+ 1),
LINK(P1+ 1)← P2, LINK(P2)← P1, and S← S+ SIZE(PU). Go to step 7.

5. [Allocate.] If TAG(PU) = “+”, set LINK(P0)← AVAIL, LINK(P0+1)← LOC(AVAIL),
LINK(AVAIL+ 1)← P0, and AVAIL← P0.

6. [Merge upper area.] Otherwise let P1← LINK(P0)← LINK(PU), P2← LINK(P0+
1)← LINK(PU+1), LINK(P1+1)← LINK(P2)← P0, and S← SIZE(P0)+SIZE(PU).

7. [Update size.] Set TAG(P0)← TAG(P0+ S− 1)← “−” and SIZE(P0)← SIZE(P0+
S− 1)← S.

17. [10 ] What should the contents of LOC(AVAIL) and LOC(AVAIL) + 1 be in (9) when
there are no available blocks present?
They should both point to LOC(AVAIL).

x 18. [20 ] Figures 42 and 43 were obtained using the same data, and essentially the
same algorithms (Algorithms A and B), except that Fig. 43 was prepared by modifying
Algorithm A to choose best-fit instead of first-fit. Why did this cause Fig. 42 to have a
large available area in the higher locations of memory, while in Fig. 43 there is a large
available area in the lower locations?
Both algorithms allocate at the end of the block of free memory that they choose, and
in the beginning, both will allocate from higher to lower locations, leaving a large area
at the end.
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However, as soon as some of the areas allocated are freed, the best fit method will
tend to use those newly freed areas from the higher locations since they will tend to be
smaller, whereas the first fit method will prefer to allocate in the large lower area.

Eventually the first-fit method fills up the large area and starts allocating at other
areas in the lower part, leaving the higher locations mostly free as the first chunks are
freed, whereas the best fit method continues to avoid filling up this large area.

Note that this works because most allocations have a limited lifetime; in other
algorithms it might be the case that some of the first allocations are never freed until
the end of the algorithm while many other chunks appear and disappear quickly. In
this case, the first fit method would still show some allocations in the higher locations,
although more sparse than those in lower locations.

x 19. [24 ] Suppose that blocks of memory have the form of (7), but without the
TAG or SIZE fields required in the last word of the block. Suppose further that the
following simple algorithm is being used to make a reserved block free again: Q← AVAIL,
LINK(P0)← Q, LINK(P0+1)← LOC(AVAIL), LINK(Q+1)← P0, AVAIL← P0, TAG(P0)←
“−”. (This algorithm does nothing about collapsing adjacent areas together.)

Design a reservation algorithm, similar to Algorithm A, that does the necessary
collapsing of adjacent free blocks while searching the AVAIL list, and at the same time
avoids any unnecessary fragmentation of memory as in (2), (3), and (4).

The following algorithm reserves a block of size N ≥ 2 in the first available area
while collapsing adjacent free blocks to find such area. In order to avoid unnecessary
fragmentation, it allocates in the beginning of the block that is found rather than in
the end.

1. [Initialize.] Set P← AVAIL.

2. [Collapse free blocks.] Let PU ← P+ SIZE(P). If TAG(PU) = “−”, then set P1 ←
LINK(PU), P2 ← LINK(PU + 1), LINK(P1 + 1) ← P2, LINK(P2) ← P1, SIZE(P) ←
SIZE(P) + SIZE(PU), and repeat this step.

3. [Do we have enough space?] If SIZE(P) < N, go to step 5.

4. [Advance.] Set P ← LINK(P). If P = LOC(AVAIL), terminate unsuccessfully;
otherwise go to step 2.

5. [Reserve block.] Set P1 ← LINK(P), P2 ← LINK(P + 1), LINK(P1 + 1) ← P2,
LINK(P2)← P1, and TAG(P)← “+′′. PF← P+ N,

6. [Reclaim extra space.] Let K← SIZE(P)−N and PU← P+SIZE(P). If K = 0, or K =
1 and TAG(P1) = “+”, then terminate the algorithm. Otherwise, set P1← AVAIL

and P2← LOC(AVAIL) if TAG(PU) = “+”, P1← LINK(PU) and P2← LINK(PU+ 1)
otherwise. Finally set LINK(P1+ 1)← LINK(P2)← PF← P+ N, LINK(PF)← P1,
LINK(PF + 1) ← P2, SIZE(PF) ← K, TAG(PF) ← “−”, and SIZE(P) ← N. The
resulting block is at position P.
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20. [00 ] Why is it desirable to have the AVAIL[k] lists in the buddy system doubly
linked instead of simply having straight linear lists?
To be able to remove arbitrary elements from the lists efficiently in step S2 of the
liberation algorithm.

x 22. [21 ] The text repeatedly states that the buddy system allows only blocks of size
2k to be used, and exercise 21 shows this can lead to a substantial increase in the storage
required. But if an 11-word block is needed in connection with the buddy system, why
couldn’t we find a 16-word block and divide it into an 11-word piece together with two
free blocks of sizes 4 and 1?
We could indeed modify the algorithms to work like this, although they would get
quite complicated and slower (more blocks would have to be marked as reserved for the
liberation algorithm to work).

23. [05 ] What is the binary address of the buddy of the block of size 4 whose binary
address is 011011110000? What would it be if the block were of size 15 instead of 4?
011011110100 and 011011100000, respectively.

x 25. [22 ] Criticize the following idea: “Dynamic storage allocation using the buddy
system will never reserve a block of size 2m in practical situations (since this would fill
the whole memory), and, in general, there is a maximum size 2n for which no blocks
of greater size will ever be reserved. Therefore it is a waste of time to start with such
large blocks available, and to combine buddies in Algorithm S when the combined block
has a size larger than 2n.”
While this is correct when we actually know the program and the size of the allocations
it can make is bounded for any valid input, there are many situations where this is not
the case, for example when we are writing a library or when the size of some allocation
depends on the input; then the program would spuriously fail for inputs that it could
otherwise have processed at least in a some computer.

x 26. [21 ] Explain how the buddy system could be used for dynamic storage allocation
in memory locations 0 through M−1 even when M does not have the form 2m as required
in the text.
If m is an integer such that 2m ≤ M < 2m+1, the memory could be split into pieces of
size 2k, 0 ≤ k ≤ m, no more than one piece of the same size. For example, for locations
0 to 3999, we would initially have one free area at 0 of size 2048, another one at 2048 of
size 1024, another one at 3072 of size 512, another one at 3584 of size 256, another one
at 3840 of size 128, and another one at 3968 of size 32.

x 36. [20 ] A certain lunch counter in Hollywood, California, contains 23 seats in a row.
Diners enter the shop in groups of one or two, and a glamorous hostess shows them
where to sit. Prove that she will always be able to seat people immediately without
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splitting up any pairs, if no customer who comes alone is assigned to any of the seats
numbered 2, 5, 8, ..., 20, provided that there never are more than 16 customers present
at a time. (Pairs leave together.)
A single customer can always seat, and they can avoid the “forbidden” seats. Now, if
a pair comes, there were at most 14 customers already there. If seats 22 and 23 are
free, then we can sit the pair there. Otherwise there are at most 13 customers in the
seats 1–21, so if we divide the seats in 7 groups of 3 (1–3, 4–6, etc.), at least one of
these groups has no more than one seat taken, and it cannot be the middle one, so that
group has two consecutive free seats where we can seat the pair.
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